We present the first model-independent measurement of the helicity of $W$ bosons produced in top quark decays, based on a 1 fb$^{-1}$ sample of candidate $t\bar{t}$ events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider. We reconstruct the angle $\theta^*$ between the momenta of the down-type fermion and the top quark in the $W$ boson rest frame for each top quark decay. A fit of the resulting \costheta distribution finds that the fraction of longitudinal $W$ bosons $f_0 = 0.425 \pm 0.166 \hbox{(stat.)} \pm 0.102 \hbox{(syst.)}$ and the fraction of right-handed $W$ bosons $f_+ = 0.119 \pm 0.090 \hbox{(stat.)} \pm 0.053 \hbox{(syst.)}$, which is consistent at the 30% C.L. with the standard model.
COS(THETA*) distribution for leptonic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for hadronic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for W decay in dilepton events.. Data are read from plots and errors are statistcial (sqrt(N)).
We present a study of events with W bosons and hadronic jets produced in pbar p collisions at a center of mass energy of 1.8 TeV. The data consist of 51400 W^+/- -> e^+/- nu decay candidates from 108 pb^-1 of integrated luminosity collected with the CDF detector at the Tevatron Collider. The cross sections and jet production properties have been measured for W + \geq 1 to \geq 4 jet events. The data are compared to predictions of leading order QCD matrix element calculations with added gluon radiation and simulated fragmentation.
W and Z0 + njet cross sections.. Data for Z0 read from the plot.
ET distribution of the highest ET jet W + >=1jet production. Data read from the plot.
ET distribution of the second highest ET jet W + >=2jet production. Data read from the plot.
We present the first measurement of the jet pseudorapidity distribution in direct photon events from a sample of pp¯ collisions at s=1.8TeV, recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from hard quark-gluon Compton scattering, qg→qγ, with the final state quark producing the jet of hadrons. The jet pseudorapidity distribution in this model is sensitive to parton momentum fractions between 0.015 and 0.15. We find that the shape of the measured pseudorapidity distribution agrees well with next-to-leading order QCD calculations.
The fully corrected shape of the pseudorapidity distribution normalised to the data in the absolute pseudorapidity bin from 0 to 0.7.
We describe the properties of six-jet events, with the six-jet mass exceeding 520GeV/c2, produced at the Fermilab proton-antiproton collider operating at a center-of-mass energy of 1.8 TeV. Observed distributions for a set of 20 multijet variables are compared with predictions from the HERWIG QCD parton shower Monte Carlo program, the NJETS leading order QCD matrix element Monte Carlo program, and a phase-space model in which six-jet events are distributed uniformly over the kinematically allowed region of the six-body phase space. In general the QCD predictions provide a good description of the observed six-jet distributions.
The 6Jet mass spectrum.
Dalitz X distribution for jet 3 in the reduced 3-JET final state.
Dalitz X distribution for jet 4 in the reduced 3-JET final state.
We have used 106 pb~-1 of data collected in proton-antiproton collisions at sqrt(s)=1.8 TeV by the Collider Detector at Fermilab to measure jet angular distributions in events with two jets in the final state. The angular distributions agree with next to leading order (NLO) predictions of Quantum Chromodynamics (QCD) in all dijet invariant mass regions. The data exclude at 95% confidence level (CL) a model of quark substructure in which only up and down quarks are composite and the contact interaction scale is Lambda_ud(+) < 1.6 TeV or Lambda_ud(-) < 1.4 TeV. For a model in which all quarks are composite the excluded regions are Lambda(+) < 1.8 TeV and Lambda(-) < 1. 6 TeV.
No description provided.
Di-jet angular ratio, defined as the number with CHI < 2.5 divided by the number with CHI between 2.5 and 5.
The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase-space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD Matrix Element calculations, and QCD parton shower Monte Carlo predictions suggests that 2 -> 2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state.
3-jet mass distribution.
Inclusive 3-jet Dalitz X3 distribution.
Inclusive 3-jet Dalitz X4 distribution.
An analysis of theA-dependence of the target-diffractive cross-section is presented. Data on thet-dependence of the cross section are fitted in the usual exponential form. The mean multiplicity of negative particles produced diffractively is found not to be sensitive to the nuclear mass. TheA-dependence of the emitted proton multiplicity and the angular distributions of the produced charged particles suggest re-scattering of the emitted particles on other nucleons of the nucleus. All these facts are compared with results obtained by Monte-Carlo simulation according to a two-component Dual Parton Model.
For target-diffractive cross-section.
For target-diffractive cross-section.
Multiplicities for the diffractive system.
We present a study of events with Z bosons and hadronic jets produced in $\overline{p}p$ collisions at a center-of-mass energy of 1.8 TeV. The data consist of 6708 $Z \rightarrow e~+e~-$ decays from 106 pb$~{-1}$ of integrated luminosity collected using the CDF detector at the Tevatron Collider. The Z $+ \ge n$ jet cross sections and jet production properties have been measured for n = 1 to 4. The data compare well to predictions of leading order QCD matrix element calculations with added gluon radiation and simulated parton fragmentation.
The notation (N)JET(S) means greater than or equal to N jets. Cross sections include the branching ratio to E+ E-.
Transverse energy distribution of the first highest ET jet in >= 1jet events.. Data read from plots.
Transverse energy distribution of the second highest ET jet in >= 2jet events.. Data read from plots.
The properties of two-, three-, four-, five-, and six-jet events with multijet masses >600 GeV /c2 are compared with QCD predictions. The shapes of the multijet-mass and leading-jet-angular distributions are approximately independent of jet multiplicity and are well described by the NJETS matrix element calculation and the HERWIG parton shower Monte Carlo predictions. The observed jet transverse momentum distributions for three- and four-jet events discriminate between the matrix element and parton shower predictions, the data favoring the matrix element calculation.
Exclusive 2-jet mass distribution.
Exclusive 3-jet mass distribution.
Exclusive 4-jet mass distribution.
The W+jet angular distribution is measured using W→eν events recorded with the Collider Detector at Fermilab (CDF) during the 1988-89 and 1992-93 Tevatron runs. The data agree well with both a leading order and a next-to-leading order theoretical prediction. The shape of the angular distribution is similar to that observed in photon + jet data and significantly different from that observed in dijet data.
Data normalized to 1 in the cos(theta) range -0.6 to 0.6.
Data normalized to 1 in the abs(cos(theta)) range <0.3.