The first measurement of the dijet transverse momentum balance $x_j$ in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV is presented. The $x_j$ observable, defined as the ratio of the subleading over leading jet transverse momentum in a dijet pair, is used to search for jet quenching effects. The data, corresponding to an integrated luminosity of 174.6 nb$^{-1}$, were collected with the CMS detector in 2016. The $x_j$ distributions and their average values are studied as functions of the charged-particle multiplicity of the events and for various dijet rapidity selections. The latter enables probing hard scattering of partons carrying distinct nucleon momentum fractions $x$ in the proton- and lead-going directions. The former, aided by the high-multiplicity triggers, allows probing for potential jet quenching effects in high-multiplicity events (with up to 400 charged particles), for which collective phenomena consistent with quark-gluon plasma (QGP) droplet formation were previously observed. The ratios of $x_j$ distributions for high- to low-multiplicity events are used to quantify the possible medium effects. These ratios are consistent with simulations of the hard-scattering process that do not include QGP production. These measurements set an upper limit on medium-induced energy loss of the subleading jet of 1.26% of its transverse momentum at the 90% confidence level in high multiplicity pPb events.
The unfolded dijet balance distribution, $(1/N_{dijet})(dN_{dijet}/dx_{j})$, as function of $x_{j}$ for the $10-60$, $60-120$, $120-185$, $185-250$ and $250-400$ multiplicity ranges with both jets at the midrapidity regions.
The unfolded dijet balance distribution, $(1/N_{dijet})(dN_{dijet}/dx_{j})$, as function of $x_{j}$ for the $10-60$, $60-120$, $120-185$, $185-250$ and $250-400$ multiplicity ranges with leading and subleading jets at midrapidity and forward regions, respectively.
The unfolded dijet balance distribution, $(1/N_{dijet})(dN_{dijet}/dx_{j})$, as function of $x_{j}$ for the $10-60$, $60-120$, $120-185$, $185-250$ and $250-400$ multiplicity ranges with leading and subleading jets at midrapidity and backward regions, respectively.
The first observation of coherent $\phi$(1020) meson photoproduction off heavy nuclei is presented using ultraperipheral lead-lead collisions at a center-of-mass energy per nucleon pair of 5.36 TeV. The data were collected by the CMS experiment and correspond to an integrated luminosity of 1.68 $\mu$b$^{-1}$. The $\phi$(1020) meson signals are reconstructed via the K$^+$K$^-$ decay channel. The production cross section is presented as a function of the $\phi$(1020) meson rapidity in the range 0.3 $\lt$$\lvert y\rvert$$\lt$ 1.0, probing gluons that carry a fraction of the nucleon momentum ($x$) around $10^{-4}$. The observed cross section exhibits little dependence on rapidity and is significantly suppressed, by a factor of ${\sim}$5, compared to a baseline model that treats a nucleus as a collection of free nucleons. Theoretical models that incorporate either nuclear shadowing or gluon saturation predict suppression of the $\phi$(1020) meson cross section with only a small dependence on rapidity, but the magnitude of the predicted suppression varies greatly. Models considering only nuclear shadowing effects result in the best agreement with the experimental data. This study establishes a powerful new tool for exploring nuclear effects and nuclear gluonic structure in the small-$x$ regime at a unique energy scale bridging the perturbative and nonperturbative quantum chromodynamics domains.
The differential coherent $\phi$ photoproduction cross section and the nuclear suppression factor as a function of rapidity.
Using $e^+e^-$ collision data collected with the BESIII detector operating at the Beijing Electron Positron Collider, the cross section of $e^+e^-\to \pi^+\pi^- h_c$ is measured at 59 points with center-of-mass energy $\sqrt{s}$ ranging from $4.009$ to $4.950~\mathrm{GeV}$ with a total integrated luminosity of $22.2~\mathrm{fb}^{-1}$. The cross section between $4.3$ and $4.45~\mathrm{GeV}$ exhibits a plateau-like shape and drops sharply around $4.5~\mathrm{GeV}$, which cannot be described by two resonances only. Three coherent Breit-Wigner functions are used to parameterize the $\sqrt{s}$-dependent cross section line shape. The masses and widths are determined to be $M_1=(4223.6_{-3.7-2.9}^{+3.6+2.6})~\mathrm{MeV}/c^2$, $\Gamma_1=(58.5_{-11.4-6.5}^{+10.8+6.7})~\mathrm{MeV}$, $M_2=(4327.4_{-18.8-9.3}^{+20.1+10.7})~\mathrm{MeV}/c^2$, $\Gamma_2=(244.1_{-27.1-18.0}^{+34.0+23.9})~\mathrm{MeV}$, and $M_3=(4467.4_{-5.4-2.7}^{+7.2+3.2})~\mathrm{MeV}/c^2$, $\Gamma_3=(62.8_{-14.4-6.6}^{+19.2+9.8})~\mathrm{MeV}$. The first uncertainties are statistical and the other two are systematic. The statistical significance of the three Breit-Wigner assumption over the two Breit-Wigner assumption is greater than $5\sigma$.
Dressed cross section at the 19 XYZ-I energy points with large statistics. The table also lists the integral luminosity, the number of signal events, the weighted efficiency, the radiative correction factor, and the dressed cross section. For the dressed cross section, the first error is statistical, the second error is the systematic, and the third error comes from the input branching ratios which is the dominant one in the multiplicative systematic uncertainties.
Dressed cross section at the 25 XYZ-II energy points with lower statistics. The table also lists the integral luminosity, the number of signal events, the weighted efficiency, the radiative correction factor, and the dressed cross section. For the dressed cross section, the first error is statistical, the second error is the systematic, and the third error comes from the input branching ratios which is the dominant one in the multiplicative systematic uncertainties.
Dressed cross section and its upper limit at the 15 R-scan energy points with small statistics. The table also lists the integral luminosity, the number of signal events, the weighted efficiency, the radiative correction factor, and the dressed cross section. For the dressed cross section, the first error is statistical, the second error is the systematic, and the third error comes from the input branching ratios which is the dominant one in the multiplicative systematic uncertainties.
The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at a center-of-mass energy of $\sqrt{s_\mathrm{NN}} = 200$ GeV is measured using data collected by the sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied for detector acceptance, reconstruction efficiency, combinatorial pairs, and contributions from secondary decays. The measured distributions cover $|\eta| < 1.1$ across various centralities, and the average pseudorapidity density of charged hadrons at mid-rapidity is compared to predictions from Monte Carlo heavy-ion event generators. This result, featuring full azimuthal coverage at mid-rapidity, is consistent with previous experimental measurements at the Relativistic Heavy Ion Collider, thereby supporting the broader sPHENIX physics program.
Nch, Npart, and Nch/(Npart/2) values in Table 4, presented in Figure 6.
Nch as a function of $\eta$, presented in Figure 5.
This paper reports measurements of the transverse energy per unit pseudorapidity ($dE_{T}/dη$) produced in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, performed with the sPHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The results cover the pseudorapidity range $\left|η\right| < 1.1$ and constitute the first such measurement performed using a hadronic calorimeter at RHIC. Measurements of $dE_{T}/dη$ are presented for a range of centrality intervals and the average $dE_{T}/dη$ as a function of the number of participating nucleons, $N_{\mathrm{part}}$, is compared to a variety of Monte Carlo heavy-ion event generators. The results are in agreement with previous measurements at RHIC, and feature an improved granularity in $η$ and improved precision in low-$N_{\mathrm{part}}$ events.
An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using Run 2024 Au+Au data. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.
An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using a GEANT-4 simulation of HIJING events. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.
An example of the measured energy distribution in a single OHCal tower, showing the MIP distribution from cosmic-ray data from the detector.
Partonic collectivity is one of the necessary signatures for the formation of quark-gluon plasma in high-energy nuclear collisions. Number of constituent quarks (NCQ) scaling has been observed for hadron elliptic flow $v_2$ in top energy nuclear collisions at the Relativistic Heavy Ion Collider and the LHC, and this has been theoretically suggested as strong evidence for partonic collectivity. In this Letter, a systematic analysis of $v_2$ of $π^{\pm}$, $K^{\pm}$, $K^{0}_{S}$, $p$, and $Λ$ in Au+Au collisions at ${\sqrt{s_{_{\rm{NN}}}}}$ = 3.2, 3.5, 3.9, and 4.5 GeV, with the STAR experiment at the Relativistic Heavy Ion Collider, is presented. NCQ scaling is markedly violated at 3.2 GeV, consistent with a hadronic-interaction dominated equation of state. However, as the collision energy increases, a gradual evolution to NCQ scaling is observed. This beam-energy dependence of $v_2$ for all hadrons studied provides evidence for the onset of dominant partonic interactions by ${\sqrt{s_{_{\rm{NN}}}}}$ = 4.5 GeV.
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3 GeV
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.2 GeV
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.5 GeV
This paper presents a study of the inclusive forward J/$\psi$ yield as a function of forward charged-particle multiplicity in pp collisions at $\sqrt{s} = 13$ TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relative J/$\psi$ yields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range $|\eta| < 1$. The J/$\psi$ mesons are reconstructed via their decay into $\mu^+ \mu^-$ pairs in the forward rapidity region ($2.5 < y < 4$). The relative multiplicity is estimated in the forward pseudorapidity range $-3.7 < \eta < -1.7$, which overlaps with the J/$\psi$ rapidity region. The results show a steeper-than-linear increase of the J/$\psi$ yields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.
Forward inclusive J/$\psi$ relative yield as a function of the relative multiplicity in −3.7 < $\eta$ < −1.7 in INEL > 0 pp collisions at $\sqrt{s}$ = 13 TeV.
We measure the spin-density matrix elements (SDMEs) for the photoproduction of $ϕ(1020)$ off of the proton in its decay to $K_S^0K_L^0$, using 105 pb$^{-1}$ of data collected with a linearly polarized photon beam using the GlueX experiment. The SDMEs are measured in nine bins of the squared four-momentum transfer $t$ in the range $-t=0.15-1.0$ GeV$^2$, providing the first measurement of their $t$-dependence for photon beam energies $E_γ= 8.2-8.8$ GeV. We confirm the dominance of Pomeron exchange in this region, and put constraints on the contribution of other Regge exchanges. We also find that helicity amplitudes where the helicity of the photon and the $ϕ(1020)$ differ by two units are negligible.
Spin-density matrix elements of $\phi(1020)$ mesons produced by a linearly polarized photon beam in the helicity system. For each bin of $-t$, the limits of the bin range are given, along with the average $-\bar t$ and root-mean-square deviation $-t_\text{RMS}$ of all events that fall within the bin.
We report precision measurements on cumulants ($C_{n}$) and factorial cumulants ($\kappa_{n}$) of (net-)proton number distributions up to fourth-order in Au+Au collisions from phase II of the Beam Energy Scan program at RHIC. (Anti-)protons are selected at midrapidity ($|y|<0.5$) within a transverse momentum range of $0.4 < p_T < 2.0$ GeV/$c$. The collision energy and centrality dependence of these cumulants are studied over center-of-mass energies $\sqrt{s_{NN}}$ = 7.7 -- 27 GeV. Relative to various non-critical-point model calculations and peripheral collision 70-80% data, the net-proton $C_4/C_2$ measurement in 0-5% collisions shows a minimum around 19.6 GeV for significance of deviation at $\sim2$--$5\sigma$. In addition, deviations from non-critical baselines around the same collision energy region are also seen in proton factorial cumulant ratios, especially in $\kappa_2/\kappa_1$ and $\kappa_3/\kappa_1$. Dynamical model calculations including a critical point are called for in order to understand these precision measurements.
Reference multiplicity distributions (RefMult3 and RefMult3X) for Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV along with MC Glauber model fits.
Collision centrality dependence of net-proton cumulants in Au+Au collisions for $\sqrt{s_{NN}}$ = 7.7 - 27 GeV obtained with RefMult3 and RefMult3X centrality definition.
Collision energy dependence of net-proton cumulant ratios and proton factorial cumulant ratios in Au+Au collisions from $\sqrt{s_{NN}}$ = 7.7 - 200 GeV for 0-5$\%$ and 70-80$\%$ centrality. Data from $\sqrt{s_{NN}}$ = 7.7 - 27 GeV are from BES-II (obtained with RefMult3X except 27 GeV where RefMult3 is used). Data from $\sqrt{s_{NN}}$ = 39 - 200 GeV are from BES-I (RefMult3).
Anisotropic flow and radial flow are two key probes of the expansion dynamics and properties of the quark-gluon plasma (QGP). While anisotropic flow has been extensively studied, radial flow, which governs the system's radial expansion, has received less attention. Notably, experimental evidence for the global and collective nature of radial flow has been lacking. This Letter presents the first measurement of transverse momentum ($p_{\mathrm{T}}$) dependence of radial flow fluctuations ($v_0(p_{\mathrm{T}})$) over $0.5<p_{\mathrm{T}}<10$ GeV, using a two-particle correlation method in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. The data reveal three key features supporting the collective nature of radial flow: long-range correlation in pseudorapidity, factorization in $p_{\mathrm{T}}$, and centrality-independent shape in $p_{\mathrm{T}}$. The comparison with a hydrodynamic model demonstrates the sensitivity of $v_0(p_{\mathrm{T}})$ to bulk viscosity, a crucial transport property of the QGP. These findings establish a new, powerful tool for probing collective dynamics and properties of the QGP.
Data from Figure 2, panel a, $v_{0}$
Data from Figure 2, panel c, upper panel, Normalized Covariance $\times 10^{3}$ in 0-5% Centrality
Data from Figure 2, panel c, lower panel, Normalized Covariance $\times 10^{3}$ in 50-60% Centrality