None
.
.
.
We have observed ϱ 0 production in e + e − annihilation to hadrons at high energies. The differential cross section at a centre of mass energy W , of 34 GeV, is presented. In the range 0.2< x < 0.7, we measure 0.33 ± 0.06 (stat.) ± 0.07 (syst.), 0.22 ± 0.06 ± 0.05 and 0.22 ± 0.02 ± 0.05 ϱ 0 /event at W = 14, 22 and 34 GeV respectively.
No description provided.
No description provided.
INTEGRATION OVER RESTRICTED X RANGE.
Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant α S . Although within one model the value of α S varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach.
DATA CORRECTED WITH HOYER MODEL (ALPHA-S=0.15).
DATA CORRECTED WITH LUND MODEL (ALPHA-S=0.25).
No description provided.
None
.
.
.
In a high statistics (180 events/μb) bubble chamber study of the reaction fx K − p → K 0 π − p at 8.25 GeV c , we observe a K 0 π − state at 2088±20 MeV with a width 170 +100 −50 MeV, produced with a cross section of 3.6±1.2 μ b. In addition we observe this state in the channels K ∗ (890)ππ , ϱ K π , ω K π with a combined cross section of 7.1±2.6 μ b, and possibly K ∗ (890)πππ .
No description provided.
No description provided.
The rationR=σ(e+e−→hadrons)/σ(e+e−→ µ+ µ−) was measured with the LENA detector at DORIS in a scan between 7.40 and 7.48 GeV and between 8.67 and 9.43 GeV center of mass energies. Corrected for QED radiative effects,R is found to be constant with an average value ofR=3.37 ±0.06stat±0.23syst. No narrow resonances withΓee(Γhad/Γtot)⊗0.30 keV (95% C.L.) and no steps have been observed. Based on this value ofR, revised values for υ(1S) resonance parameters are presented.
No description provided.
No description provided.
NUMERICAL VALUES GIVEN IN APPENDIX IN PREPRINT. STATISTICAL ERRORS ONLY.
We have observed the decay h0(2040)→p¯p in the reaction π+n→p¯pp at 10 GeV/c detected in the large-aperture solenoid spectrometer at SLAC. We have measured the product of the cross section and branching ratio, σ(π+n→h0(2040)p)B(h0(2040)→p¯p), to be 0.84±0.17 μb. The moments of the angular distribution are consistent with the quantum numbers of the h0 meson being JPC=4++ and IG=0+.
Axis error includes +- 0.0/0.0 contribution (?/////BREIT-WIGNER PLUS POLYNOMIAL BACKGROUND FITTED TO P AP MASS DISTRIBUTION/REQUIRED THE MOMENTUM OF ONE P AND ONE AP TO BE >3 GEV, AND ONLY USED FOR THE FASTER P IN THE P AP MASS DISTRIBUTION).
In a search for short lived particles with a high resolution C 3 F 8 bubble chamber and a streamer chamber, 21 charmed meson candidates produced by 340 GeV cπ − have been identified. The cross section for associated charm production is (28±11) μb per nucleon assuming a linear A -dependence. The mean lifetimes of the D mesons in units of 10 −13 s are τ( D 0 , D ̄ 0 ) = 4.1 −1.3 +2.6 ± 0.5, τ( D ± ) = 6.3 −2.3 4.8 ± 1.5 .
LINEAR A DEPENDENCE ASSUMED FROM PROD. OF 33+-13 D-DBAR EVENTS.
We report on a measurement of the process e + e − →e + e − + hadrons, where one of the scattered electrons is detected at large angles, with an average Q 2 of 23 GeV. The results are analysed in terms of the photon structure function F 2 and are compared with QCD predictions.
Data read off graph.
Data read off graph.
Data read off graph.
Differential three-jet cross sections have been measured in e + e − -annihilation at an average CM energy of 33.8 GeV and were compared to first- and second-order predictions of QCD and of a QED-like abelian vector theory. QCD provides a good description of the observed distributions. The inclusion of second-order effects reduced the observed quark-gluon coupling strength by about 20% to α S = 0.16 ± 0.015 (stat.) ± 0.03 (syst.). The abelian vector theory is found to be incompatible with the data.
FIRST ORDER QCD.
SECOND ORDER QCD.