We report $e^\pm-\mu^\mp$ pair yield from charm decay measured between midrapidity electrons ($|\eta|<0.35$ and $p_T>0.5$ GeV/$c$) and forward rapidity muons ($1.4<\eta<2.1$ and $p_T>1.0$ GeV/$c$) as a function of $\Delta\phi$ in both $p$$+$$p$ and in $d$+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Comparing the $p$$+$$p$ results with several different models, we find the results are consistent with a total charm cross section $\sigma_{c\bar{c}} =$ 538 $\pm$ 46 (stat) $\pm$ 197 (data syst) $\pm$ 174 (model syst) $\mu$b. These generators also indicate that the back-to-back peak at $\Delta\phi = \pi$ is dominantly from the leading order contributions (gluon fusion), while higher order processes (flavor excitation and gluon splitting) contribute to the yield at all $\Delta\phi$. We observe a suppression in the pair yield per collision in $d$+Au. We find the pair yield suppression factor for $2.7<\Delta\phi<3.2$ rad is $J_{dA}$ = 0.433 $\pm$ 0.087 (stat) $\pm$ 0.135 (syst), indicating cold nuclear matter modification of $c\bar{c}$ pairs.
The fully-corrected like-sign-subtracted heavy flavor $e$-$\mu$ pair yield in $p$+$p$.
The fully corrected like-sign-subtracted heavy flavor $e$-$\mu$ pair yield in $d$+Au.
$J_{dA}$ plotted as a function of $\Delta\phi$.
A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV is reported. Jets are reconstructed from charged particles using the anti-$k_{\rm T}$ jet algorithm with jet resolution parameters $R$ of $0.2$ and $0.3$ in pseudo-rapidity $|\eta|<0.5$. The transverse momentum $p_{\rm T}$ of charged particles is measured down to $0.15$ GeV/$c$ which gives access to the low $p_{\rm T}$ fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter $R=0.3$ considered in the analysis. The fragmentation bias introduced by selecting jets with a high $p_{\rm T}$ leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with $R=0.2$ and $R=0.3$ is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with $R<0.3$.
Average values of the number of participating nucleons (Npart), number of binary collisions (Ncoll), and the nuclear overlap function (TAA) for the centrality intervals used in the jet analysis.
Charged jet spectra using two cone radius parameters R = 0.2 and 0.3 and a leading track selection of pT > 0.15 GeV, for centrality 0-10%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.
Charged jet spectra using two cone radius parameters R = 0.2 and 0.3 and a leading track selection of pT > 0.15 GeV, for centrality 10-30%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.
High-energy proton- and deuteron-nucleus collisions provide an excellent tool for studying a wide array of physics effects, including modifications of parton distribution functions in nuclei, gluon saturation, and color neutralization and hadronization in a nuclear environment, among others. All of these effects are expected to have a significant dependence on the size of the nuclear target and the impact parameter of the collision, also known as the collision centrality. In this article, we detail a method for determining centrality classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity (i.e., the nucleus-going direction) and for determining systematic uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we find that the connection to geometry is confirmed by measuring the fraction of events in which a neutron from the deuteron does not interact with the nucleus. As an application, we consider the nuclear modification factors R_{p(d)+A}, for which there is a potential bias in the measured centrality dependent yields due to auto-correlations between the process of interest and the backward rapidity multiplicity. We determine the bias correction factor within this framework. This method is further tested using the HIJING Monte Carlo generator. We find that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an order of magnitude larger and strongly p_T dependent, likely due to the larger effect of multi-parton interactions.
Different physical quantities characterizing $d$+Au collisions, and the bias-factor corrections, for nine PHENIX centrality bins.
Different physical quantities characterizing $d$+Au collisions, and the bias-factor corrections, for nine PHENIX centrality bins.
Different physical quantities characterizing $d$+Au collisions, and the bias-factor corrections, for four PHENIX centrality bins.
The PHENIX experiment has measured open heavy-flavor production via semileptonic decay muons over the transverse momentum range 1 < pT < 6 GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p+p collisions at ?sNN = 200 GeV. In central d+Au collisions an enhancement (suppression) of heavy-flavor muon production is observed at backward (forward) rapidity relative to the yield in p+p collisions scaled by the number of binary collisions. Modification of the gluon density distribution in the Au nucleus contributes in terms of anti-shadowing enhancement and shadowing suppression; however, the enhancement seen at backward rapidity exceeds expectations from this effect alone. These results, implying an important role for additional cold nuclear matter effects, serves as a key baseline for heavy-quark measurements in A+A collisions and in constraining the magnitude of charmonia breakup effects at the Relativistic Heavy Ion Collider and the Large Hadron Collider.
Invariant yield of negatively charged heavy-flavor muons as a function of $p_T$ in $d$+Au collisions for different centralities at (a) backward rapidity (Au-going) and (b) forward rapidity (d-going).
Invariant yield of negatively charged heavy-flavor muons as a function of $p_T$ in $d$+Au collisions for different centralities at (a) backward rapidity (Au-going) and (b) forward rapidity (d-going).
Invariant yield of negatively charged heavy-flavor muons as a function of $p_T$ in $d$+Au collisions for different centralities at (a) backward rapidity (Au-going) and (b) forward rapidity (d-going).
The azimuthal anisotropy coefficients v_2 and v_4 of pi^0 and eta mesons are measured in Au+Au collisions at sqrt(s_NN)=200 GeV, as a function of transverse momentum p_T (1-14 GeV/c) and centrality. The extracted v_2 coefficients are found to be consistent between the two meson species over the measured p_T range. The ratio of v_4/v_2^2 for pi^0 mesons is found to be independent of p_T for 1-9 GeV/c, implying a lack of sensitivity of the ratio to the change of underlying physics with p_T. Furthermore, the ratio of v_4/v_2^2 is systematically larger in central collisions, which may reflect the combined effects of fluctuations in the initial collision geometry and finite viscosity in the evolving medium.
$\eta$ meson $v_2, 0-20\%$ centrality
$\eta$ meson $v_2, 20-60\%$ centrality
$\pi^0$ meson $v_4, 0-20\%$ centrality
We present results for three charmonia states (psi^prime, chi_c and J/psi) in d+Au collisions at |y|<0.35 and sqrt(s_NN)=200 GeV. We find that the modification of the psi^prime yield relative to that of the J/psi scales approximately with charged-particle multiplicity at midrapidity across p+A, d+Au, and A+A results from the Super Proton Synchrotron and the Relativistic Heavy Ion Collider. In large impact-parameter collisions we observe a similar suppression for the psi^prime and J/psi, while in small impact-parameter collisions the more weakly bound psi^prime is more strongly suppressed. Owing to the short time spent traversing the Au nucleus, the larger psi^prime suppression in central events is not explained by an increase of the nuclear absorption due to meson formation time effects.
The $\psi^{\prime}$, $\chi_c$, and $J/\psi$ $R_{dAu}$ for minimum bias centrality integrated $d$+Au collisions as a function of the quarkonia binding energy, where $J/\psi$ $R_{dAu}$ has been corrected for the effects of $\psi^{\prime}$ and $\chi_c$ feed-down.
The $\psi^{\prime}$ nuclear modification factor, $R_{dAu}$, as a function of $N_{coll}$. Also included is the previously measured $J/\psi$ $R_{dAu}$ as a function of $N_{coll}$.
The $\psi^{\prime}$ nuclear modification factor, $R_{dAu}$, as a function of proper time in nucleus. Also included is the previously measured $J/\psi$ $R_{dAu}$ as a function of $N_{coll}$.
Azimuthally anisotropic distributions of D$^0$, D$^+$ and D$^{*+}$ mesons were studied in the central rapidity region ($|y|<0.8$) in Pb-Pb collisions at a centre-of-mass energy $\sqrt{s_{\rm NN}} = 2.76$ TeV per nucleon-nucleon collision, with the ALICE detector at the LHC. The second Fourier coefficient $v_2$ (commonly denoted elliptic flow) was measured in the centrality class 30-50% as a function of the D meson transverse momentum $p_{\rm T}$, in the range 2-16 GeV/$c$. The measured $v_2$ of D mesons is comparable in magnitude to that of light-flavour hadrons. It is positive in the range $2 < p_{\rm T} < 6$ GeV/$c$ with $5.7\sigma$ significance, based on the combination of statistical and systematic uncertainties.
v2 vs. pt for D0. The first systematic (sys) error is that from the data analysis and the second is from the B feed-down subtraction, as explained in the paper.
v2 vs. pt for D+. The first systematic (sys) error is that from the data analysis and the second is from the B feed-down subtraction, as explained in the paper.
v2 vs. pt for D*+. The first systematic (sys) error is that from the data analysis and the second is from the B feed-down subtraction, as explained in the paper.
The ratios of yields of anti-baryons to baryons probes the mechanisms of baryon-number transport. Results for $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi}^{-}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega}^{-}$ in pp collisions at $\sqrt{s} = 0.9$, 2.76 and 7 TeV, measured with the ALICE detector at the LHC, are reported. Within the experimental uncertainties and ranges covered by our measurement, these ratios are independent of rapidity, transverse momentum and multiplicity for all measured energies. The results are compared to expectations from event generators, such as PYTHIA and HIJING-B, that are used to model the particle production in pp collisions. The energy dependence of $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi^{-}}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega^{-}}$, reaching values compatible with unity for $\sqrt{s} = 7$ TeV, complement the earlier $\bar{\rm p}/{\rm p}$ measurement of ALICE. These dependencies can be described by exchanges with the Regge-trajectory intercept of $\alpha_{\rm {J}} \approx 0.5$, which are suppressed with increasing rapidity interval ${\rm \Delta} y$. Any significant contribution of an exchange not suppressed at large ${\rm \Delta} y$ (reached at LHC energies) is disfavoured.
The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of pT.
The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of rapidity.
The LambdaBar/Lambda ratio at sqrt(s) = 0.9 TeV as a function of pT.
The transverse momentum (p_T) spectra and ratios of identified charged hadrons (\pi^+/-, K^+/-, p, p^bar) produced in sqrt(s_NN)=200 GeV Au+Au and d+Au collisions are reported in five different centrality classes for each collision species. The measurements of pions and protons are reported up to p_T=6 GeV/c (5 GeV/c), and the measurements of kaons are reported up to p_T=4 GeV/c (3.5 GeV/c) in Au+Au (d+Au) collisions. In the intermediate p_T region, between 2--5 GeV/c, a significant enhancement of baryon to meson ratios compared to those measured in p+p collisions is observed. This enhancement is present in both Au+Au and d+Au collisions, and increases as the collisions become more central. We compare a class of peripheral Au+Au collisions with a class of central d+Au collisions which have a comparable number of participating nucleons and binary nucleon-nucleon collisions. The p_T dependent particle ratios for these classes display a remarkable similarity, which is then discussed.
kaon AuAu Invariant yields versus $p_T$
kaon dAu Invariant yields versus $p_T$
pion AuAu Invariant yields versus $p_T$
The production of $D^{*\pm}$ mesons in deep inelastic $ep$ scattering has been measured for exchanged photon virtualities $ 5<Q^2<1000 \gev^2 $, using an integrated luminosity of 363 pb$^{-1}$ with the ZEUS detector at HERA. Differential cross sections have been measured and compared to next-to-leading-order QCD calculations. The cross-sections are used to extract the charm contribution to the proton structure functions, expressed in terms of the reduced charm cross section, $\sigma_{\rm red}^{c\bar{c}}$. Theoretical calculations based on fits to inclusive HERA data are compared to the results.
D(SIG)/DPT IN NB/GEV as a function of PT IN GEV.
D(SIG)/DETARAP IN NB as a function of ETARAP.
D(SIG)/DZ IN NB as a function of Z.