A measurement of the proton structure function F_2(x,Q^2) is presented in the kinematic range 0.045 GeV^2 < Q^2 < 0.65 GeV^2 and 6*10^{-7} < x < 1*10^{-3}. The results were obtained using a data sample corresponding to an integrated luminosity of 3.9pb^-1 in e^+p reactions recorded with the ZEUS detector at HERA. Information from a silicon-strip tracking detector, installed in front of the small electromagnetic calorimeter used to measure the energy of the final-state positron at small scattering angles, together with an enhanced simulation of the hadronic final state, has permitted the extension of the kinematic range beyond that of previous measurements. The uncertainties in F_2 are typically less than 4%. At the low Q^2 values of the present measurement, the rise of F_2 at low x is slower than observed in HERA data at higher Q^2 and can be described by Regge theory with a constant logarithmic slope. The dependence of F_2 on Q^2 is stronger than at higher Q^2 values, approaching, at the lowest Q^2 values of this measurement, a region where F_2 becomes nearly proportional to Q^2.
Measured values of F2 at Q**2 = 0.045 GeV**2 as a function of X.
Measured values of F2 at Q**2 = 0.065 GeV**2 as a function of X.
Measured values of F2 at Q**2 = 0.085 GeV**2 as a function of X.
The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1
The measured cross section for D* production. The first is derived from theK2PI final state and the second from the K4PI final state.
The differential cross section w.r.t. Q**2 from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.
The differential cross section w.r.t. X from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.
The inclusive single and double differential cross-sections for neutral and charged current processes with four-momentum transfer squared Q^2 between 150 and 30,000 GeV2 and with Bjorken x between 0.0032 and 0.65 are measured in e^+ p collisions. The data were taken with the H1 detector at HERA between 1994 and 1997, and they correspond to an integrated luminosity of 35.6 pb^-1. The Q^2 evolution of the parton densities of the proton is tested, yielding no significant deviation from the prediction of perturbative QCD. The proton structure function F_2(x,Q^2) is determined. An extraction of the u and d quark distributions at high x is presented. At high Q^2 electroweak effects of the heavy bosons Z0 and W are observed and found to be consistent with Standard Model expectation.
The structure function, F2, and the reduced cross section, in NC DIS scattering at Q**2 from 150 to 30000 GeV**2 as a function if x and y. Also tabulated are the QED corrections to the data, which have already been applied. The individual corrections used to calculate F2 from the cross sections are given in the following table.
The various corrections to the cross sections used to calcuate the F2 values given in the previous table. See the text of the paper for more details.
The CC double differential cross section and the structure function term PHI(C=CC) - see text of the paper for details - at Q**2 from 150 to 1 5000 GeV**2 as a function of both x and y. Also tabulated are the QED corrections to the data, which have already been applied.
The isoscalar structure functions $xF_3$ and $F_2$ are measured as functions of $x$ averaged over all $Q^2$ permissible for the range of 6 to 28 GeV of incident neutrino (anti-neutrino) energy at the IHEP-JINR Neutrino Detector. The QCD analysis of $xF_3$ structure function provides $\Lambda_{\bar{MS}}^{(4)} = (411 \pm 200)$ MeV under the assumption of QCD validity in the region of low $Q^2$. The corresponding value of the strong interaction constant $\alpha_S (M_Z) = 0.123^{+0.010}_{-0.013}$ agrees with the recent result of the CCFR collaboration and with the combined LEP/SLC result.
No description provided.
No description provided.
Deep--inelastic scattering events with a leading baryon have been detected by the H1 experiment at HERA using a forward proton spectrometer and a forward neutron calorimeter. Semi--inclusive cross sections have been measured in the kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T <= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV, or a neutron with energy E' >= 160 GeV. The measurements are used to test production models and factorization hypotheses. A Regge model of leading baryon production which consists of pion, pomeron and secondary reggeon exchanges gives an acceptable description of both semi-inclusive cross sections in the region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading neutron data are used to estimate for the first time the structure function of the pion at small Bjorken--x.
Semi-inclusive structure function for data with forward proton.
Semi-inclusive structure function for data with forward proton.
Semi-inclusive structure function for data with forward proton.
Measurements of the proton structure function $F_2$ for $0.6 < Q^2 < 17 {GeV}^2$ and $1.2 \times 10^{-5} < x <1.9 \times 10^{-3}$ from ZEUS 1995 shifted vertex data are presented. From ZEUS $F_2$ data the slopes $dF_2/d\ln Q^2$ at fixed $x$ and $d\ln F_2/d\ln(1/x)$ for $x < 0.01$ at fixed $Q^2$ are derived. For the latter E665 data are also used. The transition region in $Q^2$ is explored using the simplest non-perturbative models and NLO QCD. The data at very low $Q^2$ $\leq 0.65 {GeV}^2$ are described successfully by a combination of generalised vector meson dominance and Regge theory. From a NLO QCD fit to ZEUS data the gluon density in the proton is extracted in the range $3\times 10^{-5} < x < 0.7$. Data from NMC and BCDMS constrain the fit at large $x$. Assuming the NLO QCD description to be valid down to $Q^2\sim 1 {GeV}^2$, it is found that the $q\bar{q}$ sea distribution is still rising at small $x$ and the lowest $Q^2$ values whereas the gluon distribution is strongly suppressed.
F2.
F2.
F2.
The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.
Cross section for diffractive scattering.
Cross section for diffractive scattering.
Cross section for diffracitve scattering.
This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5
The measured distribution of T, the squared momentum transfer to the virtual pluton.
Slope of the T distribution.
The structure function F2(NAME=D4).
A measurement is made of the cross section for the process ep --> eXY in deep-inelastic scattering with the H1 detector at HERA. The cross section is presented in terms of a differential structure function F_2^D(3)(x_P,beta,Q^2) of the proton over the kinematic range 4.5 < Q^2 < 75 GeV^2. The dependence of F_2^D(3) on x_P is found to vary with beta, demonstrating that a factorisation of F_2^D(3) with a single diffractive flux independent of beta and Q^2 is not tenable. An interpretation in which a leading diffractive exchange and a subleading reggeon contribute to F_2^D(3) reproduces well the x_P dependence of F_2^D(3) with values for the pomeron and subleading reggeon intercepts of alpha_P(0)=1.203 \pm 0.020(stat.)\pm 0.013(sys.) ^{+0.030}_{-0.035}(model} and alpha_reg(0)=0.50\pm 0.11(stat.)\pm 0.11 (sys.}^{+0.09}_{-0.10} (model), respectively. A fit is performed of the data using a QCD motivated model, in which parton distributions are assigned to the leading and subleading exchanges. In this model, the majority of the momentum of the pomeron must be carried by gluons in order for the data to be well described.
No description provided.
No description provided.
No description provided.
A small electromagnetic sampling calorimeter, installed in the ZEUS experiment in 1995, significantly enhanced the acceptance for very low x and low Q^2 inelastic neutral current scattering, e^{+}p \to e^{+}X, at HERA. A measurement of the proton structure function F_2 and the total virtual photon-proton (\gamma^*p) cross-section is presented for 0.11 \le Q^{2} \le 0.65 GeV^2 and 2 \times 10^{-6} \le x \le 6 \times 10^{-5}, corresponding to a range in the \gamma^{*}p c.m. energy of 100 \le W \le 230 GeV. Comparisons with various models are also presented.
Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.
Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.
Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.