Date

Collaboration

Study of Hadronic Event-Shape Variables in Multijet Final States in pp Collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 10 (2014) 087, 2014.
Inspire Record 1305624 DOI 10.17182/hepdata.66571

Event-shape variables, which are sensitive to perturbative and nonperturbative aspects of quantum chromodynamic (QCD) interactions, are studied in multijet events recorded in proton-proton collisions at sqrt(s) = 7 TeV. Events are selected with at least one jet with transverse momentum pt > 110 GeV and pseudorapidity abs(eta) < 2.4, in a data sample corresponding to integrated luminosities of up to 5 inverse femtobarns. The distributions of five event-shape variables in various leading jet pt ranges are compared to predictions from different QCD Monte Carlo event generators.

1 data table match query

Third-jet resolution parameter for $170 < p_{T,1} < 250$ GeV.


Study of the Underlying Event at Forward Rapidity in pp Collisions at $\sqrt{s}$ = 0.9, 2.76, and 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 04 (2013) 072, 2013.
Inspire Record 1218372 DOI 10.17182/hepdata.66750

The underlying event activity in proton-proton collisions at forward pseudorapidity (-6.6 < eta < -5.2) is studied with the CMS detector at the LHC, using a novel observable: the ratio of the forward energy density, dE/d(eta), for events with a charged-particle jet produced at central pseudorapidity (abs(eta[jet]) < 2) to the forward energy density for inclusive events. This forward energy density ratio is measured as a function of the central jet transverse momentum, pt, at three different pp centre-of-mass energies (sqrt(s) = 0.9, 2.76, and 7 TeV). In addition, the sqrt(s) evolution of the forward energy density is studied in inclusive events and in events with a central jet. The results are compared to those of Monte Carlo event generators for pp collisions and are discussed in terms of the underlying event. Whereas the dependence of the forward energy density ratio on jet pt at each sqrt(s) separately can be well reproduced by some models, all models fail to simultaneously describe the increase of the forward energy density with sqrt(s) in both inclusive events and in events with a central jet.

1 data table match query

Ratio of the energy deposited in the pseudorapidity range $-6.6 < \eta < -5.2$ for events with a charged-particle jet with $|\eta^\text{jet}| < 2$ with respect to the energy in inclusive events, as a function of the jet transverse momentum $p_{\rm T}$ for $\sqrt{s} =$ 0.9, 2.76 , and 7 TeV. Data are taken from the Rivet Analysis.


Measurement of four-jet production in proton-proton collisions at sqrt(s)=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 89 (2014) 092010, 2014.
Inspire Record 1273574 DOI 10.17182/hepdata.66510

Measurements of the differential cross sections for the production of exactly four jets in proton-proton collisions are presented as a function of the transverse momentum pt and pseudorapidity eta, together with the correlations in azimuthal angle and the pt balance among the jets. The data sample was collected in 2010 at a center-of-mass energy of 7 TeV with the CMS detector at the LHC, with an integrated luminosity of 36 inverse picobarns. The cross section for a final state with a pair of hard jets with pt > 50 GeV and another pair with pt > 20 GeV within abs(eta) < 4.7 is measured to be sigma = 330 +- 5 (stat.) +- 45 (syst.) nb. It is found that fixed-order matrix element calculations including parton showers describe the measured differential cross sections in some regions of phase space only, and that adding contributions from double parton scattering brings the Monte Carlo predictions closer to the data.

1 data table match query

The measured fiducial cross section. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, model dependence and jet energy resolution and trigger efficiency correction.


Shape, transverse size, and charged hadron multiplicity of jets in pp collisions at 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2012) 160, 2012.
Inspire Record 1111014 DOI 10.17182/hepdata.70063

Measurements of jet characteristics from inclusive jet production in proton-proton collisions at a centre-of-mass energy of 7 TeV are presented. The data sample was collected with the CMS detector at the LHC during 2010 and corresponds to an integrated luminosity of 36 inverse picobarns. The mean charged hadron multiplicity, the differential and integral jet shape distributions, and two independent moments of the shape distributions are measured as functions of the jet transverse momentum for jets reconstructed with the anti-kT algorithm. The measured observables are corrected to the particle level and compared with predictions from various QCD Monte Carlo generators.

125 data tables match query

The measured differential jet shape $\rho(r)$ for jets with 20 GeV $< p_{\mathrm{T}} <$ 25 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.

The measured differential jet shape $\rho(r)$ for jets with 25 GeV $< p_{\mathrm{T}} <$ 30 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.

The measured differential jet shape $\rho(r)$ for jets with 30 GeV $< p_{\mathrm{T}} <$ 40 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.

More…

Evidence for collectivity in pp collisions at the LHC

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 765 (2017) 193-220, 2017.
Inspire Record 1471287 DOI 10.17182/hepdata.76506

Measurements of two- and multi-particle angular correlations in pp collisions at sqrt(s) = 5, 7, and 13 TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 inverse picobarn (5 TeV), 6.2 inverse picobarns (7 TeV), and 0.7 inverse picobarns (13 TeV), were collected using the CMS detector at the LHC. The second-order (v[2]) and third-order (v[3]) azimuthal anisotropy harmonics of unidentified charged particles, as well as v[2] of K0 short and Lambda/anti-Lambda particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v[2] values of charged hadrons (mostly pions), K0 short, and Lambda/anti-Lambda, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pt of about 2 GeV/c. For 13 TeV data, the v[2] signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.

3 data tables match query

The elliptic flow, $v_{2}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for $\Lambda/\bar{\Lambda}$.

The elliptic flow per constituent quark after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)/n_{q}$, as a function of transverse kinetic energy per constituent quark $KE_{T}/n_{q}$ for $K^{0}_{S}$.

The elliptic flow per constituent quark after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)$, as a function of transverse kinetic energy per constituent quark $KE_{T}/n_{q}$ for $\Lambda/\bar{\Lambda}$.


Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 045, 2016.
Inspire Record 1468068 DOI 10.17182/hepdata.78403

Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.

2 data tables match query

Summary of fit results for a parameterisation probing the ratios of coupling modifiers for leptons versus quarks. The results for the combination of ATLAS and CMS are reported together with their measured and expected uncertainties. Also shown are the results from each experiment. The parameter $\kappa_{qq}$ is positive definite since $\kappa_H$ is always assumed to be positive. For the parameter $\lambda_{lq}$, for which there is no sensitivity to the sign, only the absolute values are shown. Negative values for the parameter $\lambda_{Vq}$ are excluded by more than 4$\sigma$.

Expected correlation matrix obtained from the fit combining ATLAS and CMS pre-fit Asimov data sets using the generic parameterisation with nine parameters, $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$.


Version 2
Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 02 (2017) 096, 2017.
Inspire Record 1471281 DOI 10.17182/hepdata.77221

The transverse momentum spectra of weak vector bosons are measured in the CMS experiment at the LHC. The measurement uses a sample of proton-proton collisions at sqrt(s) = 8 TeV, collected during a special low-luminosity running that corresponds to an integrated luminosity of 18.4 +/- 0.5 inverse picobarns. The production of W bosons is studied in both electron and muon decay modes, while the production of Z bosons is studied using only the dimuon decay channel. The ratios of W- to W+ and Z to W differential cross sections are also measured. The measured differential cross sections and ratios are compared with theoretical predictions up to next-to-next leading order in QCD.

4 data tables match query

Ratio of the normalized fiducial differential cross section of Z0 boson production at center-of-energy 8 TeV to Z0 boson production at center-of-energy 7 TeV decaying to dimuon for boson PT < 20 GeV.

Ratio of the normalized fiducial differential cross section of Z0 boson production at center-of-energy 8 TeV to Z0 boson production at center-of-energy 7 TeV decaying to dimuon for boson PT < 20 GeV.

Ratio of the normalized fiducial differential cross section of Z0 boson production at center-of-energy 8 TeV to Z0 boson production at center-of-energy 7 TeV decaying to dimuon for boson PT > 20 GeV.

More…

Version 4
Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 488, 2021.
Inspire Record 1850544 DOI 10.17182/hepdata.102525

Production cross sections of the Higgs boson are measured in the H $\to$ ZZ $\to$ $4\ell$ ($\ell$ $=$ e, $\mu$) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 fb$^{-1}$ is used. The signal strength modifier $\mu$, defined as the ratio of the Higgs boson production rate in the $4\ell$ channel to the standard model (SM) expectation, is measured to be $\mu$ $=$ 0.94 $\pm$ 0.07 (stat) ${}^{+0.09}_{-0.08}$ (syst) at a fixed value of $m_H$ = 125.38 GeV. The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H $\to$ $4\ell$ process is measured to be 2.84 $^{+0.23}_{-0.22}$ (stat) ${}^{+0.26}_{-0.21}$ (syst) fb, which is compatible with the SM prediction of 2.84 $\pm$ 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.

4 data tables match query

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

More…

Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 105 (2010) 022002, 2010.
Inspire Record 855299 DOI 10.17182/hepdata.56006

Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at sqrt(s) = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity, dN(charged)/d(eta), for |eta| < 0.5, of 5.78 +/- 0.01 (stat) +/- 0.23 (syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from sqrt(s) = 0.9 to 7 TeV is 66.1% +/- 1.0% (stat) +/- 4.2% (syst). The mean transverse momentum is measured to be 0.545 +/- 0.005 (stat) +/- 0.015 (syst) GeV/c. The results are compared with similar measurements at lower energies.

5 data tables match query

Measured differential yield of charged hadrons as a function oftransverse momentum for pseudorapidities 0.1, 0.3, 0.5 and 0.7 for centre-of-mass energy 7000 GeV.Errors are statistical and systematic added in quadrature.

Measured differential yield of charged hadrons as a function oftransverse momentum for pseudorapidities 0.9, 1.1, 1.3 and 1.5 for centre-of-mass energy 7000 GeV.Errors are statistical and systematic added in quadrature.

Measured differential yield of charged hadrons as a function oftransverse momentum for pseudorapidities 1.7, 1.9, 2.1 and 2.3 for centre-of-mass energy 7000 GeV.Errors are statistical and systematic added in quadrature.

More…

Measurement of the Underlying Event Activity at the LHC with sqrt(s)= 7 TeV and Comparison with sqrt(s) = 0.9 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 09 (2011) 109, 2011.
Inspire Record 916908 DOI 10.17182/hepdata.57696

A measurement of the underlying activity in scattering processes with a hard scale in the several GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 and 7 TeV, using data collected by the CMS experiment at the LHC. The production of charged particles with pseudorapidity |eta| < 2 and transverse momentum pT > 0.5 GeV/c is studied in the azimuthal region transverse to that of the leading set of charged particles forming a track-jet. A significant growth of the average multiplicity and scalar-pT sum of the particles in the transverse region is observed with increasing pT of the leading track-jet, followed by a much slower rise above a few GeV/c. For track-jet pT larger than a few GeV/c, the activity in the transverse region is approximately doubled with a centre-of-mass energy increase from 0.9 to 7 TeV. Predictions of several QCD-inspired models as implemented in PYTHIA are compared to the data.

13 data tables match query

Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 0.9 TeV.

Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 7 TeV.

Fully corrected average charged particle scalar PT Sum per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 0.9 TeV.

More…