Measurements of two- and multi-particle angular correlations in pp collisions at sqrt(s) = 5, 7, and 13 TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 inverse picobarn (5 TeV), 6.2 inverse picobarns (7 TeV), and 0.7 inverse picobarns (13 TeV), were collected using the CMS detector at the LHC. The second-order (v[2]) and third-order (v[3]) azimuthal anisotropy harmonics of unidentified charged particles, as well as v[2] of K0 short and Lambda/anti-Lambda particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v[2] values of charged hadrons (mostly pions), K0 short, and Lambda/anti-Lambda, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pt of about 2 GeV/c. For 13 TeV data, the v[2] signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.
The production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 150 inverse microbarns, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 inverse picobarns. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 +/- 0.05 (stat) +/- 0.08 (syst) in the dimuon channel and 1.02 +/- 0.08 (stat) +/- 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. This binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.
This paper reports the measurement of J/psi meson production in proton-proton (pp) and proton-lead (pPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV by the CMS experiment at the LHC. The data samples used in the analysis correspond to integrated luminosities of 28 inverse picobarns and 35 inverse nanobarns for pp and pPb collisions, respectively. Prompt and nonprompt J/psi mesons, the latter produced from the decay of B mesons, are measured in their dimuon decay channels. Differential cross sections are measured in the transverse momentum range of 2 < pt < 30 GeV/c, and center-of-mass rapidity ranges of abs(y[CM]) < 2.4 (pp) and -2.87 < y[CM] < 1.93 (pPb). The nuclear modification factor, R[pPb], is measured as functions of both pt and y[CM]. Small modifications of the J/psi cross sections are observed in pPb relative to pp collisions. The ratio of J/psi production cross sections in p-going and Pb-going directions, R[FB], studied as functions of pt and y[CM], shows a significant decrease for increasing transverse energy deposited at large pseudorapidities. These results, which cover a wide kinematic range, provide new insight on the role of cold nuclear matter effects on prompt and nonprompt J/psi production.
The differential cross sections of $\Lambda_\mathrm{c}^+$ baryon production are measured via the exclusive decay channel $\Lambda_\mathrm{c}^+ \to $pK$^-\pi^+$, as a function of transverse momentum ($p_\mathrm{T}$) in proton-proton (pp) and lead-lead (PbPb) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV with the CMS detector at the LHC. The measurement is performed within the $\Lambda_\mathrm{c}^+$ rapidity interval $|y|<$1.0 in the $p_\mathrm{T}$ range of 5-20 GeV/$c$ in pp and 10-20 GeV/$c$ in PbPb collisions. The observed yields of $\Lambda_\mathrm{c}^+$ for $p_\mathrm{T}$ of 10-20 GeV/$c$ suggest a possible suppression in central PbPb collisions compared to pp collisions. The $\Lambda_\mathrm{c}^+/$D$^0$ production ratio in pp collisions is compared to theoretical models. In PbPb collisions, this ratio is consistent with the result from pp collisions in their common $p_\mathrm{T}$ range.
Measurements of prompt $\psi$(2S) meson production cross sections in proton-lead (pPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{_\mathrm{NN}}}=$ 5.02 TeV are reported. The results are based on pPb and pp data collected by the CMS experiment at the LHC, corresponding to integrated luminosities of 34.6 nb$^{-1}$ and 28.0 pb$^{-1}$, respectively. The nuclear modification factor $R_\mathrm{pPb}$ is measured for prompt $\psi$(2S) in the transverse momentum range 4 $<$ p$_\mathrm{T}$ $<$ 30 GeV$/c$ and the center-of-mass rapidity range $-$2.4 $< y_\mathrm{cm} <$ 1.93. The results on $\psi$(2S) $R_\mathrm{pPb}$ are compared to the corresponding modification factor for prompt J$/\psi$ mesons and are found to be more suppressed than the J$/\psi$ states over the entire kinematic range studied.
The production cross sections of B$^0_\mathrm{s}$ mesons and charge conjugates are measured in proton-proton (pp) and PbPb collisions via the exclusive decay channel B$^0_\mathrm{s}$ $\to$ $\mu^+\mu^-$K$^+$K$^-$ at a centre-of-mass energy of 5.02 TeV per nucleon pair and within the rapidity range $|y|$ $\lt$ 2.4 using the CMS detector at the LHC. The pp measurement is performed as a function of transverse momentum (p$_\mathrm{T}$) of the B$^0_\mathrm{s}$ meson in the range of 7 to 50 GeV/$c$ and is compared to the predictions of perturbative QCD calculations. The B$^0_\mathrm{s}$ production yield in PbPb collisions is measured in two p$_\mathrm{T}$ intervals, 7 to 15 and 15 to 50 GeV/$c$, and compared to the yield in pp collisions in the same kinematic region. The nuclear modification factor ($R_\mathrm{AA}$) is found to be 1.5 $\pm$ 0.6 (stat) $\pm$ 0.5 (syst) for 7-15 GeV/$c$, and 0.87 $\pm$ 0.30 (stat) $\pm$ 0.17 (syst) for 15-50 GeV/$c$, respectively. Within current uncertainties, the results are consistent with models of strangeness enhancement and a suppression as observed for the B$^+$ mesons.
Jets containing a prompt J$/\psi$ meson are studied in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using the CMS detector at the LHC. Jets are selected to be in the transverse momentum range of 30 $\lt$$p_\mathrm{T}$$\lt$ 40 GeV. The J$/\psi$ yield in these jets is evaluated as a function of the jet fragmentation variable $z$, the ratio of the J$/\psi$$p_\mathrm{T} $ to the jet $p_\mathrm{T}$. The nuclear modification factor, $R_\mathrm{AA}$, is then derived by comparing the yield in lead-lead collisions to the corresponding expectation based on proton-proton data, at the same nucleon-nucleon center-of-mass energy. The suppression of the J$/\psi$ yield shows a dependence on $z$, indicating that the interaction of the J$/\psi$ with the quark-gluon plasma formed in heavy ion collisions depends on the fragmentation that gives rise to the J$/\psi$ meson.
Differential cross sections for the Drell-Yan process, including Z boson production, using the dimuon decay channel are measured in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV. A data sample recorded with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 173 nb$^{-1}$. The differential cross section as a function of the dimuon mass is measured in the range 15-600 GeV, for the first time in proton-nucleus collisions. It is also reported as a function of dimuon rapidity over the mass ranges 15-60 GeV and 60-120 GeV, and ratios for the p-going over the Pb-going beam directions are built. In both mass ranges, the differential cross sections as functions of the dimuon transverse momentum $p_\mathrm{T}$ and of a geometric variable $\phi^*$ are measured, where $\phi^*$ highly correlates with $p_\mathrm{T}$ but is determined with higher precision. In the Z mass region, the rapidity dependence of the data indicate a modification of the distribution of partons within a lead nucleus as compared to the proton case. The data are more precise than predictions based upon current models of parton distributions.