Version 2
Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 056, 2020.
Inspire Record 1746445 DOI 10.17182/hepdata.91636

A measurement of the inclusive cross section of top quark pair production in association with a Z boson using proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC is performed. The data sample corresponds to an integrated luminosity of 77.5 fb$^{-1}$, collected by the CMS experiment during 2016 and 2017. The measurement is performed using final states containing three or four charged leptons (electrons or muons), and the Z boson is detected through its decay to an oppositely charged lepton pair. The production cross section is measured to be $\sigma(\mathrm{t\bar{t}Z})$ $=$ 0.95 $\pm$ 0.05 (stat) $\pm$ 0.06 (syst) pb. For the first time, differential cross sections are measured as functions of the transverse momentum of the Z boson and the angular distribution of the negatively charged lepton from the Z boson decay. The most stringent direct limits to date on the anomalous couplings of the top quark to the Z boson are presented, including constraints on the Wilson coefficients in the framework of the standard model effective field theory.

12 data tables

Measured absolute differential tt̄Z production cross section in the full phase space as a function of the transverse momentum of the Z boson, compared to the predictions obtained with the MadGraph5_aMC@NLO MC simulation, and to the theory prediction at NLO+NNLL accuracy (1905.07815). The distribution $Δσ$ is integrated over the bin, and $\mathrm{d}σ/\mathrm{d}p_{\mathrm{T}}(\mathrm{Z})$ is additionally divided by the bin width. The last bin includes the overflow contribution, but a finite bin width is used for the normalization.

Measured normalized differential tt̄Z production cross section in the full phase space as a function of the transverse momentum of the Z boson, compared to the predictions obtained with the MadGraph5_aMC@NLO MC simulation, and to the theory prediction at NLO+NNLL accuracy (1905.07815). The distribution $1/σ\,Δσ$ is integrated over the bin, and $1/σ\,\mathrm{d}σ/\mathrm{d}p_{\mathrm{T}}(\mathrm{Z})$ is additionally divided by the bin width. The last bin includes the overflow contribution, but a finite bin width is used for the normalization.

Measured absolute differential tt̄Z production cross section in the full phase space as a function of $\cosθ^{*}_{\mathrm{Z}}$, compared to the predictions obtained with the MadGraph5_aMC@NLO MC simulation.

More…

Measurement of Top Quark Polarisation in T-Channel Single Top Quark Production

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 04 (2016) 073, 2016.
Inspire Record 1403169 DOI 10.17182/hepdata.38092

A first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 inverse-femtobarns. A high-purity sample of t-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. A differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of 0.26 +/- 0.03 (stat) +/- 0.10 (syst), which is compatible with a p-value of 4.6% with the standard model prediction of 0.44.

4 data tables

The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top quark.

The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top antiquark.

The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top quark and antiquark.

More…

THE H-3 + P ---> P + N + D REACTION AT A TRITIUM MOMENTUM OF 5-GEV/C

Abdullin, S.K. ; Blinov, A.V. ; Vanyushin, I.A. ; et al.
Nucl.Phys.A 506 (1990) 471-481, 1990.
Inspire Record 297384 DOI 10.17182/hepdata.15700

Using a liquid hydrogen bubble chamber of the ITEP, 80 cm in diameter, a study was made of the 3 H + p → p + n + d reaction with an incident momentum of 5 GeV/c for the tritium nuclei. The reaction cross section was 20.4 ± 0.2 mb. The angular, momentum and mass distributions of the reaction products in the 4π geometry have been obtained. We have separated the phase-space regions corresponding to quasi-free pn scattering and to the final-state Nd interaction. In the region of quasi-free pn scattering various experimental spectra are compared with the theoretical predictions, by using pole diagrams with nuclear vertex functions for three NN potentials: the Yamaguchi potential, the RSC potential and the potential in the quark-compound bag model. In the mass spectra of pn, pd and nd systems no evidence for the exhibition of two- and three-baryon resonances has been obtained.

6 data tables

No description provided.

No description provided.

No description provided.

More…