We present results from a high-momentum-resolution measurement of the π-p elastic differential and total cross-sections-at values of cos θ* between — 0.60 and 0.85 in the centre-of-mass system and at incident-beam momenta between 1.34GeV/c and 1.49 GeV/c—close to the X0 production threshold. There is no significant enhancement near the X0 production threshold. However, a small effect of ~ 3 standard deviations is present, having mass 1898.8 MeV and width ~5MeV, and appearing at an incident-pion momentum of 1435 MeV/c. In addition, a narrow ~ 5-standard-deviation effect atEc.m.= 1876 MeV appeared at an incident-pion momentum of 1389 MeV/c.
No description provided.
No description provided.
No description provided.
A high statistics experiment was performed on Bhabha scattering at energies between 14 and 34 GeV. Good agreement with QED was observed. The combined data on Bhabha scattering and μ pair production were found to agree with the standard theory of electroweak interaction giving sin 2 θ = 0.27 −0.07 +0.06 . Assuming for the Z 0 mass a value of 90 GeV the leptonic weak coupling constants were determined to g V 2 = −0.04 ± 0.06 and g A 2 = 0.35 ± 0.09. A search for scalar leptons sets lower limits on the mass of scalar electrons of M s e > 16.6 GeV and of scalar muons of M s μ > 16.4 GeV.
No description provided.
No description provided.
We have measured, at an average centre-of-mass energy of 34.22 GeV a forward-backward charge asymmetry in the reaction e + e − → μ + μ − of value −0.161 ± 0.032. This demonstrates the existence of an axial vector neutral current with coupling strength of g e a g μ a =0.53 ± 0.10. We have also obtained a limit on the vector coupling strength of g e v g μ v <0.12. The Weinberg angle is found to be sin 2 θ W =0.29 +0.09 −0.11 . From the reaction e + e − → τ + τ − we have found g e a g τ a <0.34, g e v g τ v <0.55.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Measurements are reported of the differential cross section for the reaction π − +p→ ω +n from threshold to a final-state c.m. momentum P ∗ of 200 MeV /c . The previously reported fall in total cross section σ/P ∗ below about 100 MeV/ c is again seen. The differential cross section remains close to isotropic over the entire range. A paralle experiment on the variation in the elastic differential cross section across the threshold shows evidence of this threshold. The elastic data cover a range of incident moments from 1010 to 1180 MeV/ c in steps of 5 MeV/ c .
CROSS SECTION DEPENDENCE ON FINAL STATE CENTRE OF MASS MOMENTUM.
ANGULAR DISTRIBUTIONS ARE ALMOST ISOTROPIC.
LEGENDRE POLYNOMIAL COEFFICIENTS NORMALIZED SUCH THAT SIG = 4*PI*LEG(L=0).
We present results from a high momentum resolution measurement of the π − p elastic differential cross section near the η production threshold. By analysing the cusp discontinuity in the elastic cross section we deduce the non-spin-flip elastic amplitude and compare it with solutions from phase-shift analyses.
No description provided.
No description provided.
No description provided.
None
No description provided.
Measurements are reported of the differential cross section for the reaction π−p→π−p,π0n,andηn at three angles close to 180° and for incident momenta in the range 0.6 to 1.0 GeV/c. The three measurements were made simultaneously at 1% intervals of beam momentum. The data on elastic scattering resolve a discrepancy between two earlier experiments. They also show clearly the effect of the opening of the ηn channel. The charge-exchange data show that I-spin bounds are not violated in the kinematic region covered. The ηn data can be adequately described with known s-channel resonances. No evidence for narrow N*'s is seen in any channel.
No description provided.
No description provided.
None
No description provided.
A measurement of the complete differential cross section for the reaction pp→dπ+ at 3.00, 3.20, 3.43, 3.65, 3.83, 4.00, 4.20, and 5.05 GeVc incident proton momentum has been made in an attempt to establish the role of the Δ (1950) in this region. The data show that the previously observed enhancement in the forward cross section between 3 and 4 GeVc due to this isobar is an effect which damps out quickly as the production angle departs from zero degrees, in contrast with the well-known enhancement at 1.35 GeVc, which is evident at all angles. In particular, the one-pion-exchange model is in poor agreement with the extended set of data. A detailed description is given of a novel proportional-wire-chamber system which facilitated the selection of this rather rare reaction from a very high competing background.
Axis error includes +- 6/6 contribution.
Axis error includes +- 6/6 contribution.
No description provided.