The production of enutral kaons in e + e − annihilation has been measured for c.m. energies between 3.4 GeV and 7.6 GeV. Near 4 GeV the inclusive K S cross section shows an increase and structure similar to total hadron production. Roughly 40–45% of all hadronic final states contain kaons, except at 4.028 GeV and 4.415 GeV, where a significantly larger kaon fraction is observed.
No description provided.
THIS IS TWICE THE MEASURED KS CROSS SECTION. THE ERRORS ARE STATISTICAL ONLY. THERE IS 15 PCT ABSOLUTE NORMALIZATION ERROR, PLUS POSSIBLY SOME ENERGY DEPENDENT ERROR. THE DATA ARE NOT EQUALLY SPACED IN THE ENERGY INTERVALS.
The reactions K − d→ Σ − p, K − d→ Σ − (1385)p, K − d→ Λ (1405)n and K − d→ Λ (1520)n have been studied at K − momenta between 686 and 844 MeV/ c in an experiment with the 81 cm Saclay bubble chamber at CERN. About 630 000 pictures have been analyzed. Partial and differential cross sections are presented. A one-nucleon-exchange model is used to extract the kaon-nucleon-hyperon coupling constants from these results. For g( K N Σ(1197)), g( K N Σ(1385)) and g( K N Λ(1405)) we find values which are compatible with the SU(3) predictions. The coupling constant g( K N Λ(1520)) obtained by our method agrees with that determined from the partial decay width for Λ(1520)→ K N .
CROSS SECTIONS FROM FITTING WITH BREIT-WIGNER DISTRIBUTIONS AND SMOOTH BACKGROUND.
CROSS SECTION WITH A T-CUT.
CROSS SECTION WITH A T-CUT.
Results are presented on the inclusive reactions p p → K 0 X , p p → Λ X and p p → Λ X at an incident antiproton momentum of 12 GeV/ c in BEBC. The cross sections are studied as functions of the Feynman scaling variable x , the rapidity, the transverse momentum of the V 0 and the missing mass squared. The dependence of the Λ and Λ polarization on x are also studied. Comparisons with proton-proton data at 12 GeV/ c are also made. Finally, events with two detected V 0 are analyzed in order to study correlations arising from the production of two strange neutral particles.
No description provided.
No description provided.
No description provided.
We present the fractional energy distributions for positive and negative hadrons produced in muon-proton and muon-neutron scattering, and ensuing charge ratios for the photon fragmentation region. Data presented for a center-of-mass energy range 2.8
No description provided.
No description provided.
No description provided.
Measurements were made of the differential cross sections for the charge exchange of K − mesons on protons at momenta of 25 and 40 GeV/ c using a high-precision spectrometer with no magnetic field. In the range 5–40 GeV/ c the reaction cross section follows a power-law dependence p K − −1.52 . In the snall momentum transfer region (− t ⪅ m π 2 ) a minimum is observed, similar to that discovered at lower energies. The differential cross sections t = 0 are considerably less than those predicted by the Regge-pole model. The parameters of the effective trajectory are determined.
.
.
Decay modes of the charmed mesons, D 0 and D + , are studied in e + e − annihilation data at 4.03 and 4.41 GeV c.m. energy. The products of cross section times branching ratio are measured for the K − π + , K − π + π + π − , K S π + π − and K − π + π + final states. Upper limits are established for the Cabibbo forbidden decays via π + π − , K + K − , K + K − π + , K + π + π − and π + π − π + . The K − π + π + π − final state is shown to be dominated by K − π + ρ 0 .
THESE PARTIAL CROSS SECTIONS ARE CONVERTED TO TOTAL D INCLUSIVE CROSS SECTIONS USING KNOWN BRANCHING RATIOS AND TABULATED IN M. PICCOLO ET AL., PL 86B, 220 (1979).
A study of the inclusive and semi-inclusive Λ and Λ production in K + p interactions at 32 GeV/ c is presented. The inclusive cross sections for Λ and Λ amount to 0.78 ± 0.05 and 0.42 ± 0.04 mb thus showing a remarkable growth between 16 and 32 GeV/ c with a factor of 1.7 for Λ and 2.8 for Λ . Target and beam fragmentation processes are found to be dominant for Λ and Λ production respectively with the following lower limits for the corresponding cross sections: σ(p → K + ʌ) > 0.5 mb and σ(K + → p ʌ ) > 0.3 mb . Although the early scaling conditions are fulfilled for the Λ production in the target fragmentation region, and Λ production in the beam fragmentation region, scaling is not observed between 16 and 32 GeV/ c in the x and p T 2 Feynman variables. The Λ production is found to be very similar in the K + p inclusive reaction at 32 GeV/ c and in the semi-inclusive reaction K − p → Λ K K X at the same energy. The Λ Λ pair production cross section increases significantly in K + p interactions from 16 to 32 GeV/ c where it reaches the value σ Λ Λ = 47 ± 11 μ b . The cross sections for Λ or Λ produced in association with an identified proton are also given and discussed.
No description provided.
No description provided.
The production of neutral kaons in the reaction K + p → K n + X is studied at the incident momentum of 32 GeV/ c . Inclusive cross sections and single-particle distributions are presented and compared with the data at lower energies. The total inclusive cross section amounts to 7.9 ± 0.3 mb at 32 GeV/ c and is significantly higher than at lower energies due to the rapid rise of multikaon production. The fraction of K n 's coming from the decay of the K ∗ resonances stays roughly constant with energy between 8.2 and 32 GeV/ c . In the central and beam fragmentation regions the single-particle distributions reveal no energy dependence between the 16 and 32 GeV/ c data in contrast with the behaviour at lower energies, while in the proton fragmentation region the data are compatible with the trend observed at lower energies and with theoretical expectations.
No description provided.
No description provided.
No description provided.
None
SIG(C=BACKWARD) = SIG(-UP<1 GEV**2)/(1-EXP(-SLOPE)). UP DISTRIBUTION OF EVENTS HAS A PERFECT EXPONENTIAL SHAPE.
Measurements of the ν and ν¯ weak hadronic neutral-current total cross sections and hadron energy distributions are consistent with a V−A form for this current. They are three standard deviations from pure V, pure A, or a pure T form and unambiguously exclude V+A and any linear combination of S and P.
DATA FOR VARIOUS BEAM FOCUSING.
No description provided.