Hadronic events obtained with the CELLO detector at PETRA are compared with second order QCD predictions using different models for the fragmentation of quarks and gluons into hadrons. We find that the model dependence in the determination of the strong coupling constant persists when going from first to second order QCD calculations.
ASYMMETRY FOR DATA CORRECTED WITH IF MODEL (ALPHA-S=0.12).
ASSYMETRY FOR DATA CORRECTED WITH SF MODEL (ALPHA-S=0.19).
No description provided.
With use of the MARK-J detector at s=34.7 GeV 21 000 e+e−→hadron events have been collected. By measurement of the asymmetry in angular energy correlations the strong coupling constant αs=0.13±0.01 (statistical)±0.02 (systematic) is determined, in complete second order, and independent of the fragmentation models and QCD cutoff values used.
DATA REQUESTED FROM THE AUTHORS.
No description provided.
Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant α S . Although within one model the value of α S varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach.
DATA CORRECTED WITH HOYER MODEL (ALPHA-S=0.15).
DATA CORRECTED WITH LUND MODEL (ALPHA-S=0.25).
No description provided.
Measurements of energy weighted angular correlations in electron positron annihilations at c.m. energies of 22 GeV and 34 GeV are presented.
ENERGY-ENERGY CORRELATIONS FOR FINAL STATE PARTICLES.
ENERGY-ENERGY CORRELATIONS FOR PRIMORDIAL HADRONS.
ASSYMETRY IN ENERGY CORRELATIONS FOR FINAL STATE PARTICLES.