The reactions π+p→Σ+(1385)K+ and π+p→Σ+(1385)K*+(890) are examined. The Σ+(1385)K+ differential cross section for −t′<0.5 GeV2 and spin density matrix elements agree with a Regge-pole model incorporating (nondegenerate) vector and tensor K* exchange with dominant M1 coupling. The Σ+(1385)K*+(890) density matrix elements are consistent with the quark-additivity predictions. A Y*+ at a mass of 1700 MeV is also observed in the Λπ+ mass distribution, produced opposite both K+ and K*+(890).
We have measured π±p and pp elastic differential cross sections in the range |cosθc.m.|<0.35 for incident momenta from 2 to 9.7 GeV/c for π−p and pp and from 2 to 6.3 GeV/c for π+p. We find that the fixed-c.m.-angle πp differential cross sections cannot be described as simple functions of s. The data are compared to the energy and angular dependence predicted by the constituent model of Gunion, Brodsky, and Blankenbecler.
We have measured the total cross-section difference for pp scattering in initial spin states parallel to the beam direction at beam momenta of 1.17, 1.47, 1.69, 1.97 and 2.49 GeV/ c . This measurement was done in a standard transmission experiment. A striking energy dependence is observed with a maximum difference of −16.9 mb at P lab = 1.47 GeV/ c .
The differential cross sections of p p elastic scattering at 0.7 GeV/ c were obtained in the range 0.0018<| t |⩽0.0320 GeV 2 . From the interference between the Coulomb and the nuclear amplitude, the ratio of real to imaginary part of the forward nuclear amplitude was found to be +0.33±0.04.
A partial wave analysis of the non-diffractively produced ( K ̄ 0 π + π - system has been performed. The system was produced in the reaction K - p→ K ̄ 0 π + π - n at 10 GeV/ c , measured in the CERN Omega spectrometer. Besides the well-known K ∗ (1420) resonance, we find good evidence for the production of Q 2 (1400) and some indication for Q 1 (1290) production in J P =1 + . In addition we clearly observe a bump in the 1800 MeV region, the properties of which are discussed.
Results on the inclusive reactions K − p → K ∗− (890) + X + and K − p → K ∗0 (890) + X 0 at 14.3 GeV/c are presented. A comparison is made with previous data and with the reaction K − p → K 0 + X at 14.3 GeV /c . Predictions of a triple-Regge model for the variation of the unnatural and natural parity exchanges with the mass of the X system are examined. The experimental values of the structure functions are compared with those calculated from a quark model.
A recent spin-parity analysis of the π + π + π − system formed opposite a proton and a coherent deuteron by incident 13 GeV/ c 2 π + mesons, is extended to a three-pion mass of 1.9 GeV/ c . Relative proportions of the contributing partial waves are presented, from threshold, and the A 3 region is discussed in detail. Contrary to results with the (3 π ) − system, a change in phase is noted for the 2 − amplitude decaying to f 0 π + via am S-wave.
We have measured the difference between the pp total cross-sections for parallel and anti-parallel longitudinal spin states at beam momenta of 3 and 6 GeV/ c . These results, combined with our previous measurements, at lower momenta, are useful in clarifying a striking structure appearing at around 1.5 GeV/ c . We have also measured for the first time, the spin-spin correlation parameter C LL ( t ) in pp elastic scattering at 6 GeV/ c . We observe evidence for an exchange with A 1 -like quantum-numbers.
We report on measurements of inclusive π 0 production at c.m. energies of 53 and 63 GeV, θ ≅90°, from p-p collisions at the CERN ISR. In the range 0.2< x t <0.45 the data can be described by a form: Ed 3 σ d p 3 ∝p − (6.6±0.8) t (1−x t ) (9.6±1.0) .
The production of φ mesions is studied in the reaction π+p→π+p K+K− and π+→π+p K0K¯0 at 3.75 GeV/c. A large isotropic component is seen in the production angular distribution for the reaction π+p→π+pφ. The cross sections for the φπ+p and φΔ++ final states are compared with the cross sections for ωπ+p and ωΔ++ at the same momentum.