We report a measurement of the exclusive $e^+e^- \to D^{(*)\pm}{D}{}^{*\mp}$ cross section as a function of center-of-mass energy near the $D^{(*)^{\pm}}{D}{}^{*\mp}$ threshold with initial state radiation. A partial reconstruction technique is used to increase the efficiency and to suppress background. The analysis is based on a data sample collected with the Belle detector at the $\Upsilon(4S)$ resonance and nearby continuum with an integrated luminosity of 547.8 $\mathrm{fb}^{-1}$ at the KEKB asymmetric-energy $e^+ e^-$ collider.
Cross section for E+ E- --> D*+ D*-.
Cross section for E+ E- --> D+ D*- (plus charged conjugate).
Using the Belle detector operating at the KEKB e+e- storage ring, we have measured the mean multiplicity and the momentum spectrum of neutral pions from the decays of the Upsilon(4S) resonance. We measure a mean of 4.70 +/- 0.04 +/- 0.22 neutral pions per Upsilon(4S) decay.
No description provided.
No description provided.
$K^0_SK^0_S$ production in two-photon collisions has been studied using a 397.6 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+e^-$ collider. For the first time the cross sections are measured in the two-photon center-of-mass energy range between 2.4 GeV and 4.0 GeV and angular range $|\cos\theta^*|<0.6$. Combining the results with measurements of $\gamma\gamma\to K^+K^-$ from Belle, we observe that the cross section ratio $\sigma(K^0_SK^0_S)/\sigma(K^+K^-)$ decreases from ~0.13 to ~0.01 with increasing energy. Signals for the $\chi_{c0}$ and $\chi_{c2}$ charmonium states are also observed.
Total cross section for the process GAMMA GAMMA --> K0S K0S.
Angular distribution of the cross section in the W range 2.4 to 2.5 GeV.
Angular distribution of the cross section in the W range 2.5 to 2.6 GeV.
K^+K^- production in two-photon collisions has been studied using a large data sample of 67 fb^{-1} accumulated with the Belle detector at the KEKB asymmetric e^+e^- collider. We have measured the cross section for the process gamma gamma -> K^+ K^- for center-of-mass energies between 1.4 and 2.4 GeV, and found three new resonant structures in the energy region between 1.6 and 2.4 GeV. The angular differential cross sections have also been measured.
Cross section for two photon production of K+ K- in the polar angular region ABS(COS(THETA*)) < 0.6.
Differential cross sections DSIG/DCOS(THETA) for the W range 1.40 to 1.56 GeV.. Statistical errors only.
Differential cross sections DSIG/DCOS(THETA) for the W range 1.56 to 1.72 GeV.. Statistical errors only.
The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.
Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.
TAU is 1-THRUST.
RHO is the normalized heavy jet mass MH**2/EVIS**2.
We accumulated e + e − annihilations into multi-hadrons at CM energies between 54.0 and 61.4 GeV with the VENUS detector at TRISTAN. Measured R -ratios are consistent with the standard model using the Z-boson mass; 91.1 GeV/ c 2 . Using two new observables, we searched for a planar four-jet and other multi-jet events resulting from the decay of a charge — 1 3 e b ' quark. Having observed no positive signals, we excluded b' masses between 19.4 and 28.2 GeV/ c 2 with a 95% confidence level, regardless of branching into charged current and loop-induced flavor-changing neutral current decay, including a possible Higgs decay process. The charge + 2 3 e top quark was excluded below f30.2 GeV/ c 2 .
R value measurements.
We present an analysis of top-antitop quark production and decay into a tau lepton, tau neutrino, and bottom quark using data from $9 {\rm fb}^{-1}$ of integrated luminosity at the Collider Detector at Fermilab. Dilepton events, where one lepton is an energetic electron or muon and the other a hadronically-decaying tau lepton, originating from proton-antiproton collisions at $\sqrt{s} = 1.96 TeV$ are used. A top-antitop quark production cross section of $8.1 \pm 2.1 {\rm pb}$ is measured, assuming standard-model top-quark decays. By separately identifying for the first time the single-tau and the ditau components, we measure the branching fraction of the top quark into tau lepton, tau neutrino, and bottom quark to be $(9.6 \pm 2.8) %$. The branching fraction of top-quark decays into a charged Higgs boson and a bottom quark, which would imply violation of lepton universality, is limited to be less than $5.9%$ at $95%$ confidence level.
The top-antitop quark production cross section measured assuming standard-model top-quark decays, TOP --> W BOTTOM.
The branching fraction of the top quark into a tau lepton, a tau neutrino and a bottom quark.
The ratio of leptonic top branching ratios, 2 * BR(TOP --> TAU NUTAU BOTTOM) / ( BR(TOP --> E NUE BOTTOM) + BR(TOP --> MU NUMU BOTTOM) ).
We report the first observation of single-top-quark production in the s channel through the combination of the CDF and D0 measurements of the cross section in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment. The measured cross section is $\sigma_s = 1.29^{+0.26}_{-0.24}$ pb. The probability of observing a statistical fluctuation of the background to a cross section of the observed size or larger is $1.8 \times 10^{-10}$, corresponding to a significance of 6.3 standard deviations for the presence of an s-channel contribution to the production of single-top quarks.
The measured cross section of single-top-quark production in the s channel.
We present a measurement of the ZZ boson-pair production cross section in 1.96 TeV center-of-mass energy ppbar collisions. We reconstruct final states incorporating four charged leptons or two charged leptons and two neutrinos from the full data set collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.7 fb-1 of integrated luminosity. Combining the results obtained from each final state, we measure a cross section of 1.04(+0.32)(-0.25) pb, in good agreement with the standard model prediction at next-to-leading order in the strong-interaction coupling.
The measured cross section for the process P PBAR --> Z0 Z0 --> LEPTON+ LEPTON- LEPTON+ LEPTON-.
The measured cross section for the process PBAR P --> Z0 Z0 --> LEPTON+ LEPTON- NU NUBAR.
The Z0 Z0 production cross section in PBAR P collisions obtained from the combination of the cross section measurements from the LEPTON+ LEPTON- LEPTON+ LEPTON- and LEPTON+ LEPTON- NU NUBAR signal samples.
The first search for single top quark production from the exchange of an $s$-channel virtual $W$ boson using events with an imbalance in the total transverse momentum, $b$-tagged jets, and no identified leptons is presented. The full data set collected by the Collider Detector at Fermilab, corresponding to an integrated luminosity of 9.45 fb$^{-1}$ from Fermilab Tevatron proton-antiproton collisions at a center of mass energy of 1.96 TeV, is used. Assuming the electroweak production of top quarks of mass 172.5 GeV/$c^2$ in the $s$-channel, a cross section of $1.12_{-0.57}^{+0.61}$ (stat+syst) pb, with a significance of 1.9 standard deviations, is measured. This measurement is combined with a previous result obtained from events with an imbalance in total transverse momentum, $b$-tagged jets, and exactly one identified lepton, yielding a cross section of $1.36_{-0.32}^{+0.37}$ (stat+syst) pb, with a significance of 4.2 standard deviations.
The s-channel single top quark cross section measured assuming top quarks of mass 172.5 GeV. The measurement uses a sample of events with large missing transverse energy, two or three jets of which one or more are b-tagged and no detected electron or muon candidates.
The combined s-channel single top quark cross section measurement assuming top quarks of mass 172.5 GeV. The measurement uses two samples of events. The first sample includes events with large missing transverse energy, two or three jets of which one or more are b-tagged and no detected electron or muon candidates. The second sample includes events with large missing transverse energy, one isolated muon or electron and two jets, at least one of which is b-tagged.