The paper presents a search for supersymmetric particles produced in proton-proton collisions at $\sqrt{s}=$ 13 TeV and decaying into final states with missing transverse momentum and jets originating from charm quarks. The data were taken with the ATLAS detector at the Large Hadron Collider at CERN from 2015 to 2018 and correspond to an integrated luminosity of 139 fb$^{-1}$. No significant excess of events over the expected Standard Model background expectation is observed in optimized signal regions, and limits are set on the production cross-sections of the supersymmetric particles. Pair production of charm squarks or top squarks, each decaying into a charm quark and the lightest supersymmetric particle $\tilde{\chi}^0_1$, is excluded at 95% confidence level for squarks with masses up to 900 GeV for scenarios where the mass of $\tilde{\chi}^0_1$ is below 50 GeV. Additionally, the production of leptoquarks with masses up to 900 GeV is excluded for the scenario where up-type leptoquarks decay into a charm quark and a neutrino. Model-independent limits on cross-sections and event yields for processes beyond the Standard Model are also reported.
We present an analysis of data from p p¯ collisions at a center-of-mass energy of √s =1800 GeV. A measurement is made of the ratio R≡σB(p p¯→W→eν)/σB(p p¯→Z0→ee). The data represent 19.6 pg−1 collected by the Collider Detector at Fermilab during the 1992–1993 collider run of the Fermilab Tevatron. We find R=10.90±0.32(stat)±0.29(syst), and from this value we extract a measurement of the W→eν branching ratio Γ(W→eν)/Γ(W)=0.1094±0.0033(stat)±0.0031(syst). From this branching ratio we set a limit on the top quark mass of mt>62 GeV/c2 at the 95% confidence level. In contrast with direct searches for the top quark, this limit makes no assumptions about the allowed decay modes of the top quark. In addition, we use a calculation of the leptonic width Γ(W→eν) to obtain a value for the W total decay width: Γ(W)=2.064±0.060(stat)±0.059(syst) GeV.
We present measurements of correlated bb¯ cross sections, μ−μ correlations, the average B0B¯0 mixing parameter χ¯, and a limit on the CP-violating parameter εB. For these measurements, we use muon pairs from bb¯ double semileptonic decays. The data used in this analysis were taken with the Collider Detector at Fermilab and represent an integrated luminosity of 17.4±0.6 pb−1. The results concerning bb¯ production correlations are compared to predictions of next-to-leading order QCD computations.
We accumulated e + e − annihilations into multi-hadrons at CM energies between 54.0 and 61.4 GeV with the VENUS detector at TRISTAN. Measured R -ratios are consistent with the standard model using the Z-boson mass; 91.1 GeV/ c 2 . Using two new observables, we searched for a planar four-jet and other multi-jet events resulting from the decay of a charge — 1 3 e b ' quark. Having observed no positive signals, we excluded b' masses between 19.4 and 28.2 GeV/ c 2 with a 95% confidence level, regardless of branching into charged current and loop-induced flavor-changing neutral current decay, including a possible Higgs decay process. The charge + 2 3 e top quark was excluded below f30.2 GeV/ c 2 .
We have observed over 102 events of the type W→τν followed by τ→ hadrons, where the taus are identified by their decay into one or three charged particles. We measure the cross section times branching ratio for pp¯→W→τν and compare it to the value for W→eν to directly measure the ratio of weak coupling constants gτ/ge. We find gτ/ge=0.97±0.07, consistent with lepton universality.
An analysis of proton-antiproton collisions at √s =1.8 TeV recorded with the Collider Detector at Fermilab (CDF) yields σ(pp¯→WX)B(W→μν)=2.21±0.22 nb and σ(pp¯→ZX)B(Z →μ+μ−)=0.226±0.032 nb. The ratio is Rμ=σWB(W→μν)/σZB(Z→μ+μ−)=9.8±1.2. Combining with previous CDF electron results gives σWB(W→lν)=2.20±0.20 nb, σZB(Z→l+l−)=0.214±0.023 nb, and Rl=10.0±0.8. We extract the ratios of the coupling constants gμ/ge and gτ/gμ. Using standard model assumptions we deduce the inverse branching ratio B−1(W→lν), the width Γ(W), and a decay-mode-independent lower bound on the top quark mass of 45 GeV/c2 (95% C.L.).
An analysis of high-transverse-momentum electrons using data from the Collider Detector at Fermilab (CDF) of p¯p collisions at s=1800 GeV yields values of the production cross section times branching ratio for W and Z0 bosons of σ(p¯p→WX→eνX)=2.19±0.04(stat)±0.21(syst) nb and σ(p¯p→Z0X→e+e−X)=0.209±0.013(stat)±0.017(syst) nb. Detailed descriptions of the CDF electron identification, background, efficiency, and acceptance are included. Theoretical predictions of the cross sections that include a mass for the top quark larger than the W mass, current values of the W and Z0 masses, and higher-order QCD corrections are in good agreement with these measured values.
We present a measurement of the ratio σB(W→eν)σB(Z0→e+e−) in p¯p collisions at s=1.8 TeV The data represent an integrated luminosity of 21.7 pb−1 from the 1992-1993 run of the Collider Detector at Fermilab. We find σB(W→eν)σB(Z0→e+e−)=10.90±0.32(stat)±0.29(syst). From this value, we extract a value for the W width, Γ(W)=2.064±0.061(stat)±0.059(syst) GeV, and the branching ratio, Γ(W→eν)Γ(W)=0.1094±0.0033(stat)±0.0031(syst), and we set a decay-mode-independent limit on the top quark mass mtop>62 GeV/c2 at the 95% C.L.
We present a measurement of the differential cross section dσ/dΣETjet for the production of multijet events in pp¯ collisions where the sum is over all jets with transverse energy ETjet>ETmin. The measured cross section for events with ΣETjet>320GeV is compared to O(αs3) perturbative QCD predictions and QCD parton shower Monte Carlo predictions. The agreement between the O(αs3) predicted and observed event rates is reasonable for ETmin=100GeV, but poorer for ETmin=20GeV.
This paper presents the first direct measurement of the $B$ meson differential cross section, $d\sigma/dp_T$, in $p\overline{p}$ collisions at $\sqrt{s}=1.8$ TeV using a sample of $19.3 \pm 0.7$ pb$~{-1}$ accumulated by the Collider Detector at Fermilab (CDF). The cross section is measured in the central rapidity region $|y| < 1$ for $p_T(B) > 6.0$ GeV/$c$ by fully reconstructing the $B$ meson decays $B~{+}\rightarrow J/\psi K~{+}$ and $B~{0}\rightarrow J/\psi K~{*0}(892)$, where $J/\psi \rightarrow \mu~+\mu~-$ and $K~{*0} \rightarrow K~+ \pi~-$. A comparison is made to the theoretical QCD prediction calculated at next-to-leading order.