The reaction gamma p -> J/Psi p has been studied in ep interactions using the ZEUS detector at HERA. The cross section for elastic J/Psi photoproduction has been measured as a function of the photon-proton centre of mass energy W in the range 40 < W < 140 GeV at a median photon virtuality Q^2 of 5*10^{-5} GeV^2. The photoproduction cross section, sigma_{gamma p -> J/Psi p}, is observed to rise steeply with W. A fit to the data presented in this paper to determine the parameter $\delta$ in the form sigma_{gamma p -> J/Psi p} \propto W^{\delta} yields the value \delta = 0.92 \pm 0.14 \pm 0.10. The differential cross section dsigma/d|t| is presented over the range |t| < 1.0 GeV^2 where t is the square of the four-momentum exchanged at the proton vertex. d\sigma/d|t| falls exponentially with a slope parameter of 4.6 \pm 0.4 (+0.4-0.6) GeV^{-2}. The measured decay angular distributions are consistent with s-channel helicity conservation.
Data from the electron channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.
Data from the muon channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.
Data from the electron channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.
We describe the properties of six-jet events, with the six-jet mass exceeding 520GeV/c2, produced at the Fermilab proton-antiproton collider operating at a center-of-mass energy of 1.8 TeV. Observed distributions for a set of 20 multijet variables are compared with predictions from the HERWIG QCD parton shower Monte Carlo program, the NJETS leading order QCD matrix element Monte Carlo program, and a phase-space model in which six-jet events are distributed uniformly over the kinematically allowed region of the six-body phase space. In general the QCD predictions provide a good description of the observed six-jet distributions.
The 6Jet mass spectrum.
Dalitz X distribution for jet 3 in the reduced 3-JET final state.
Dalitz X distribution for jet 4 in the reduced 3-JET final state.
We have used 106 pb~-1 of data collected in proton-antiproton collisions at sqrt(s)=1.8 TeV by the Collider Detector at Fermilab to measure jet angular distributions in events with two jets in the final state. The angular distributions agree with next to leading order (NLO) predictions of Quantum Chromodynamics (QCD) in all dijet invariant mass regions. The data exclude at 95% confidence level (CL) a model of quark substructure in which only up and down quarks are composite and the contact interaction scale is Lambda_ud(+) < 1.6 TeV or Lambda_ud(-) < 1.4 TeV. For a model in which all quarks are composite the excluded regions are Lambda(+) < 1.8 TeV and Lambda(-) < 1. 6 TeV.
No description provided.
Di-jet angular ratio, defined as the number with CHI < 2.5 divided by the number with CHI between 2.5 and 5.
The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase-space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD Matrix Element calculations, and QCD parton shower Monte Carlo predictions suggests that 2 -> 2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state.
3-jet mass distribution.
Inclusive 3-jet Dalitz X3 distribution.
Inclusive 3-jet Dalitz X4 distribution.
We present a study of events with Z bosons and hadronic jets produced in $\overline{p}p$ collisions at a center-of-mass energy of 1.8 TeV. The data consist of 6708 $Z \rightarrow e~+e~-$ decays from 106 pb$~{-1}$ of integrated luminosity collected using the CDF detector at the Tevatron Collider. The Z $+ \ge n$ jet cross sections and jet production properties have been measured for n = 1 to 4. The data compare well to predictions of leading order QCD matrix element calculations with added gluon radiation and simulated parton fragmentation.
The notation (N)JET(S) means greater than or equal to N jets. Cross sections include the branching ratio to E+ E-.
Transverse energy distribution of the first highest ET jet in >= 1jet events.. Data read from plots.
Transverse energy distribution of the second highest ET jet in >= 2jet events.. Data read from plots.
The properties of two-, three-, four-, five-, and six-jet events with multijet masses >600 GeV /c2 are compared with QCD predictions. The shapes of the multijet-mass and leading-jet-angular distributions are approximately independent of jet multiplicity and are well described by the NJETS matrix element calculation and the HERWIG parton shower Monte Carlo predictions. The observed jet transverse momentum distributions for three- and four-jet events discriminate between the matrix element and parton shower predictions, the data favoring the matrix element calculation.
Exclusive 2-jet mass distribution.
Exclusive 3-jet mass distribution.
Exclusive 4-jet mass distribution.
We have measured the photon structure function F 2 γ in the reaction e + e − → e + e − hadrons for average Q 2 values from 5.1 to 338 GeV 2 by using data collected by the TOPAZ detector at TRISTAN. The data have been corrected for detector effects and are compared with theoretical expectations based on QCD. The structure function F 2 γ increases as ln Q 2 , as expected. A sample of events with one or two distinct jets has been identified in the final state. Although two-jet events can be explained solely by the point-like perturbative part, one-jet events require a significant hadron-like part in addition.
No description provided.
No description provided.
No description provided.
The W+jet angular distribution is measured using W→eν events recorded with the Collider Detector at Fermilab (CDF) during the 1988-89 and 1992-93 Tevatron runs. The data agree well with both a leading order and a next-to-leading order theoretical prediction. The shape of the angular distribution is similar to that observed in photon + jet data and significantly different from that observed in dijet data.
Data normalized to 1 in the cos(theta) range -0.6 to 0.6.
Data normalized to 1 in the abs(cos(theta)) range <0.3.
Color coherence effects in pp¯ collisions are observed and studied with CDF, the Collider Detector at the Fermilab Tevatron collider. We demonstrate these effects by measuring spatial correlations between soft and leading jets in multijet events. Variables sensitive to interference are identified by comparing the data to the predictions of various shower Monte Carlo programs that are substantially different with respect to the implementation of coherence.
Observed normalised transverse energy distribution of the leading (highest ET) jet.. Data read from plot in the preprint.
Observed normalised transverse energy distribution of the second highest ET jet.. Data read from plot in the preprint.
Observed normalised pseudorapidity distribution of the third highest ET jet.. Data read from plot in the preprint.
Data taken with the Collider Detector at Fermilab (CDF) during the 1988–1989 run of the Tevatron are used to measure the distribution of the center-of-mass (rest frame of the initial state partons) angle between isolated prompt photons and the beam direction. The shape of the angular distribution for photon-jet events is found to be significantly different from that observed in dijet data. The QCD predictions show qualitative agreement with the observed prompt photon angular distribution.
Background subtracted normalised prompt photon angular distribution.