We report a study of single photon production in e + e − collisions at s =58 GeV with the TOPAZ detector at TRISTAN. From data corresponding to an integrated luminosity of 213 pb −1 , 5 single photon candidates remained after event selection, which can be compared with the expected 3.1 ν ν γ and 2.8 background events. These results exclude the selectron mass below 47.2 GeV at the 90% confidence level, if e ̃ L and e ̃ R are mass-degenerate and the photino is massless. When combined with results from other experiments, this limit improves to 75.0 GeV.
No description provided.
We present a study of differential two jet ratios in multi-hadronic final states produced by e + e − annihilation in the AMY detector at TRISTAN. The data are compared to the predictions of the next-to-leading logarithm parton-shower (NLL PS) Monte Carlo and the O ( α s 2 ) matrix element QCD models. We determine the strong coupling strength α s (57.3 GeV) = 0.130 ± 0.006.
The data are compared to the predictions of Monte-Carlo.
Using the p-scheme for jet clustering.
Using the E-scheme for jet clustering.
A measurement of the proton structure function $F_{\!2}(x,Q~2)$ is reported for momentum transfer squared $Q~2$ between 4.5 $GeV~2$ and 1600 $GeV~2$ and for Bjorken $x$ between $1.8\cdot10~{-4}$ and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that $F_{\!2}$ increases significantly with decreasing $x$, confirming our previous measurement made with one tenth of the data available in this analysis. The $Q~2$ dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to $F_{\!2}$.
No description provided.
No description provided.
No description provided.
We present a comparison of the strong couplings of light ($u$, $d$, and $s$), $c$, and $b$ quarks determined from multijet rates in flavor-tagged samples of hadronic $Z~0$ decays recorded with the SLC Large Detector at the SLAC Linear Collider. Flavor separation on the basis of lifetime and decay multiplicity differences among hadrons containing light, $c$, and $b$ quarks was made using the SLD precision tracking system. We find: $\alpha_s{_{\vphantom{y}}}~{uds}/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 0.987 \pm 0.027({\rm stat}) \pm 0.022({\rm syst}) \pm 0.022({\rm theory})$, $\alpha_s{_{\vphantom{y}}}~c/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.012 \pm 0.104 \pm 0.102 \pm 0.096$, and $\alpha_s{_{\vphantom{y}}}~b/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.026 \pm 0.041 \pm 0.041\pm 0.030.$
No description provided.
Inclusive momentum spectra are measured for all charged particles and for each of $\pi~{\pm}$, $K~{\pm}$, $K~0/\overline{K~0}$, and $p/\overline{p}$ in hadronic events produced via $e~+e~-$ annihilation at $\sqrt{s}$=58GeV . The measured spectra are compared with QCD predictions based on the modified leading log approximation(MLLA). The MLLA model reproduces the measured spectra well. The energy dependence of the peak positions of the spectra is studied by comparing the measurements with those at other energies. The energy dependence is also well described by the MLLA model.
Errors include both statistical and systematic errors.
Errors include both statistical and systematic errors.
Statistical errors only.
We have measured, with electron tagging, the forward-backward asymmetries of charm- and bottom-quark pair productions at $\langle \sqrt{s} \rangle$=58.01GeV, based on 23,783 hadronic events selected from a data sample of 197pb$~{-1}$ taken with the TOPAZ detector at TRISTAN. The measured forward-backward asymmetries are $A_{FB}~c = -0.49 \pm 0.20(stat.) \pm 0.08 (sys.)$ and $A_{FB}~b = -0.64 \pm 0.35(stat.) \pm 0.13 (sys.)$, which are consistent with the standard model predictions.
No description provided.
The total hadronic cross section in e + e − annihilation was measured at s =5.77 GeV to be σ h = 143.6 ± 1.5 (stat) ± 3.5 (sys) pb with only the QED corrections. The measurement was based on data corresponding to an integrated luminosity of 90.8 pb −1 accumulated by the TOPAZ detector at TRISTAN. Our data point put stringent constraints on the size of the γ - Z 0 interference and the Z 0 mass. Combining our data with the OPAL data at LEP, we obtained the coefficient of the interference and the Z 0 mass to be J had = 0.10 ± 0.26 and M z = 91.151 ± 0.008 GeV, respectively, in a model-independent analysis.
Total hadronic cross section after QED corrections.
Jet rates in deep inelastic electron proton scattering are studied with the H1 detector at HERA for momentum transfers squared between 10 and 4000 GeV 2 . It is shown that they can be quantitatively described by perturbative QCD in next to leading order making use of the parton densities of the proton and with the strong coupling constant α s as a free parameter. The measured value, α s ( M Z 2 ) = 0.123 ± 0.018, is in agreement both with determinations from e + e − annihilation at LEP using the same observable and with the world average.
Determination of ALP_S(MZ**2). Error contains both statistics and systematics.
We present the results of a search in p¯p collisions at s=1.8 TeV for the top quark decaying to a charged Higgs boson (H±). We search for dilepton final states from the decay chain tt¯→HH (or HW, or WW) + bb¯→ll+X. In a sample of 19.3 pb−1 collected during 1992-93 with the Collider Detector at Fermilab, we observe 2 events with a background estimation of 3.0 ± 1.0 events. Limits at 95% C.L. in the (Mtop,MH±) plane are presented. For the case Mtop<MW+Mb, we exclude at 95% C.L. the entire (Mtop,MH±) plane for the branching ratio B(H→τν) larger than 75%. We also interpret the results in terms of the parameter tan β of two-Higgs-doublet models.
Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model parameter describing the charged Higgs decay (see text).
Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model pameter describing the charged Higgs decay (see text).
Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model pameter describing the charged Higgs decay (see text).
We have studied open charm production in $\gamma \gamma$ collisions with the TOPAZ detector at the TRISTAN $e~{+}e~{-}$ collider. In this study, charm quarks were identified by electrons (and positrons) from semi-leptonic decays of charmed hadrons. The data corresponded to an integrated luminosity of 95.3 pb$~{-1}$ at a center-of-mass energy of 58 GeV. The results are presented as the cross sections of inclusive electron production in $\gamma \gamma$ collisions with an anti-tag condition, as well as the subprocess cross sections, which correspond to resolved-photon processes. The latter were measured by using a sub-sample with remnant jets. A comparison with various theoretical predictions based on direct and resolved-photon processes showed that our data prefer that with relatively large gluon contents in a photon at small $x (x \le 0.1)$, with the next-to-leading order correction, and with a charm-quark mass of 1.3 GeV.
The description of events with anti-tag, remnant-jet-tag, and no-tag are presnted in text.
.