The production rates and substructure of jets have been studied in charged current deep inelastic e+p scattering for Q**2>200 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb**-1. Inclusive jet cross sections are presented for jets with transverse energies E_T(jet) > 14 GeV and pseudorapidities in the range -1 < eta(jet) < 2. Dijet cross sections are presented for events with a jet having E_T(jet) > 14 GeV and a second jet having E_T(jet) > 5 GeV. Measurements of the mean subjet multiplicity,
Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1995-1997 sample.
Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1999-2000 sample.
Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the combined sample.
Differential cross sections for jet photoproduction in the reaction ep --> e jet X have been measured with the ZEUS detector at HERA using 82.2 pb^-1 of integrated luminosity. Inclusive jet cross sections are presented as a function of the jet transverse energy, E_T^jet, for jets with E_T^jet > 17 GeV and pseudorapidity -1 < eta^jet < 2.5, in the gamma-p centre-of-mass-energy range 142 < W_gamma-p < 293 GeV. Scaled jet invariant cross sections are presented as a function of the dimensionless variable x_T = 2 E_T^jet/W_gamma-p for
Measured inclusive jet cross section.
Measured scaled jet invariant cross section in two W intervals.
Ratio of the measured scaled jet invariant cross section in the two W intervals.
Inclusive jet differential cross sections have been measured in neutral current deep inelastic e+p scattering for boson virtualities Q**2>125 GeV**2. The data were taken using the ZEUS detector at HERA and correspond to an integrated luminosity of 38.6 pb-1. Jets were identified in the Breit frame using the longitudinally invariant K_T cluster algorithm. Measurements of differential inclusive jet cross sections are presented as functions of jet transverse energy (E_T,jet), jet pseudorapidity and Q**2, for jets with E_T,jet>8 GeV. Next-to-leading-order QCD calculations agree well with the measurements both at high Q**2 and high E_T,jet. The value of alpha_s(M_Z), determined from an analysis of dsigma/dQ**2 for Q**2>500 GeV**2, is alpha_s(M_Z) = 0.1212 +/- 0.0017 (stat.) +0.0023 / -0.0031 (syst.) +0.0028 / -0.0027 (th.).
Inclusive jet cross section DSIG/DQ**2 for jets of hadrons in the Breit frame.
Inclusive jet cross section DSIG/DET for jets of hadrons in the Breit frame.
Inclusive jet cross section DSIG/DETARAP for jets of hadrons in the Breit frame.
The dijet cross section in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb$^{-1}$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$ and a photon-proton centre-of-mass energy in the range $134 < W_{\gamma p} < 277$ GeV. Each event contains at least two jets satisfying transverse-energy requirements of $E_{T}^{\rm jet1}>14$ GeV and $E_{T}^{\rm jet2}>11$ GeV and pseudorapidity requirements of $-1<\eta^{\rm jet1,2}<2.4$. The measurements are compared to next-to-leading-order QCD predictions. The data show particular sensitivity to the density of partons in the photon, allowing the validity of the current parameterisations to be tested.
Measured cross section as a function of COS(THETA*), where THETA* is the dijet angle in the parton-parton c.m. frame. The data are shown in two X(C=GAMMA) regions.
Measured cross section as a function of ET(JET1) for X(C=GAMMA) > 0.75 for:. -1 < ETARAP(JET1) < 0. -1 < ETARAP(JET2) < 0.
Measured cross section as a function of ET(JET1) for X(C=GAMMA) > 0.75 for:. 0 < ETARAP(JET1) < 1. -1 < ETARAP(JET2) < 0.
Dijet production has been studied in neutral current deep inelastic e+p scattering for 470 < Q**2 < 20000 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb**{-1}. Dijet differential cross sections are presented in a kinematic region where both theoretical and experimental uncertainties are small. Next-to-leading-order (NLO) QCD calculations describe the measured differential cross sections well. A QCD analysis of the measured dijet fraction as a function of Q**2 allows both a precise determination of alpha_s(M_Z) and a test of the energy-scale dependence of the strong coupling constant. A detailed analysis provides an improved estimate of the uncertainties of the NLO QCD cross sections arising from the parton distribution functions of the proton. The value of alpha_s(M_Z), as determined from the QCD fit, is alpha_s(M_Z) = 0.1166 +- 0.0019 (stat.) {+ 0.0024}_{-0.0033} (exp.)} {+ 0.0057}_{- 0.0044} (th.).
The differential dijet cross section dsig/dZP1.
The differential dijet cross section dsig/dlog10(x).
The differential dijet cross section dsig/dlog10(xi).
Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e^+ + p --> e^+ + n + jet + jet + X_r have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb^{-1}. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E^{jet}_T > 6 GeV, neutron energy E_n > 400 GeV, and neutron production angle theta_n < 0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.
The differential dijet cross section as a function of ET for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.
The differential dijet cross section as a function of ET for the neutron-tagged data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.
The differential dijet cross section as a function of ETARAP for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeterenergy scale.
First inclusive measurements of isolated prompt photons in photoproduction at the HERA ep collider have been made with the ZEUS detector, using an integrated luminosity of 38.4 pb$^{-1}$. Cross sections are given as a function of the pseudorapidity and the transverse energy ($\eta^\gamma$, \eTg) of the photon, for $\eTg > $ 5 GeV in the $\gamma p$ centre-of-mass energy range 134-285 GeV. Comparisons are made with predictions from Monte Carlo models having leading-logarithm parton showers, and with next-to-leading-order QCD calculations, using currently available parameterisations of the photon structure. For forward $\eta^\gamma$ (proton direction) good agreement is found, but in the rear direction all predictions fall below the data.
The differential cross section for inclusive photoproduction of isolated photons.
Differential cross sections as a function pseudorapidity for the inclusive photoproduction of isolated photons with transverse energy from 5 to 10 GeV.
The cross section for dijet photoproduction at high transverse energies is presented as a function of the transverse energies and the pseudorapidities of the jets. The measurement is performed using a sample of ep-interactions corresponding to an integrated luminosity of 6.3 pb^(-1), recorded by the ZEUS detector.Jets are defined by applying a k_T-clustering algorithm to the hadrons observed in the final state. The measured cross sections are compared to next-to-leading order QCD calculations. In a kinematic regime where theoretical uncertainties are expected to be small, the measured cross sections are higher than these calculations.
The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.
The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.
The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.
Differential dijet cross sections have been measured with the ZEUS detector for photoproduction events in which the hadronic final state containing the jets is separated with respect to the outgoing proton direction by a large rapidity gap. The cross section has been measured as a function of the fraction of the photon (x_gamma^OBS) and pomeron (beta^OBS) momentum participating in the production of the dijet system. The observed x_gamma^OBS dependence shows evidence for the presence of a resolved- as well as a direct-photon component. The measured cross section d(sigma)/d(beta^OBS) increases as beta^OBS increases indicating that there is a sizeable contribution to dijet production from those events in which a large fraction of the pomeron momentum participates in the hard scattering. These cross sections and the ZEUS measurements of the diffractive structure function can be described by calculations based on parton densities in the pomeron which evolve according to the QCD evolution equations and include a substantial hard momentum component of gluons in the pomeron.
Differential cross section as a function of rapidity of the two highest Et jets in event.
Differential cross section as a function of transverse energy Et of the tw o highest Et jets in event.
Differential cross section as a function of invariant mass of the GAMMA P system.
We present a measurement of the differential cross section dσ/dΣETjet for the production of multijet events in pp¯ collisions where the sum is over all jets with transverse energy ETjet>ETmin. The measured cross section for events with ΣETjet>320GeV is compared to O(αs3) perturbative QCD predictions and QCD parton shower Monte Carlo predictions. The agreement between the O(αs3) predicted and observed event rates is reasonable for ETmin=100GeV, but poorer for ETmin=20GeV.
The ET shown here (unless specified otherwise) is the sum of all the jets' individual ETs. All jets are required to have the absolute values of their pseudorapidity < 4.2 and data are given for two different minimum ET cut-offs.. The errors given are statistical only.
Integrated cross sections. Again ET is the sum of the individual ETs of thejets.