Measurement of the Reactions $e^+ e^- \to e^+ e^-$ and $e^+ e^- \to \gamma \gamma$ at $\sqrt{s}=52$-{GeV}

The VENUS collaboration Abe, Koya ; Amako, Katsuya ; Arai, Yasuo ; et al.
J.Phys.Soc.Jap. 56 (1987) 3767-3770, 1987.
Inspire Record 251276 DOI 10.17182/hepdata.38511

None

1 data table match query

No description provided.


Study of pi+ pi- pair production in a two photon process at TRISTAN

The VENUS collaboration Yabuki, Fumiaki ; Abe, Koya ; Amako, Katsuya ; et al.
J.Phys.Soc.Jap. 64 (1995) 435-447, 1995.
Inspire Record 392360 DOI 10.17182/hepdata.38533

None

11 data tables match query

ABS(COS(THETA)) < 0.4 for M(P=3 4) = 1.025 GeV.

No description provided.

No description provided.

More…

Measurement of K^+K^- production in two-photon collisions in the resonant-mass region

The Belle collaboration Abe, Kazuo ; Abe, Koya ; Abe, T. ; et al.
Eur.Phys.J.C 32 (2003) 323-336, 2003.
Inspire Record 629334 DOI 10.17182/hepdata.50324

K^+K^- production in two-photon collisions has been studied using a large data sample of 67 fb^{-1} accumulated with the Belle detector at the KEKB asymmetric e^+e^- collider. We have measured the cross section for the process gamma gamma -> K^+ K^- for center-of-mass energies between 1.4 and 2.4 GeV, and found three new resonant structures in the energy region between 1.6 and 2.4 GeV. The angular differential cross sections have also been measured.

8 data tables match query

Cross section for two photon production of K+ K- in the polar angular region ABS(COS(THETA*)) < 0.6.

Differential cross sections DSIG/DCOS(THETA) for the W range 1.40 to 1.56 GeV.. Statistical errors only.

Differential cross sections DSIG/DCOS(THETA) for the W range 1.56 to 1.72 GeV.. Statistical errors only.

More…

Differential Cross-Sections for K- p Elastic Scattering from 1.4-GeV/c to 1.9-GeV/c

Abe, K. ; Barnett, B.A. ; Goldman, J.H. ; et al.
Phys.Rev.D 12 (1975) 6-14, 1975.
Inspire Record 103522 DOI 10.17182/hepdata.24826

We report here the results from an experiment to obtain differential cross sections for K−p elastic scattering in the laboratory momentum region from 1.4 to 1.9 GeV/c. These data span the region of a bump in the K−p total cross section at an energy of 2.05 GeV. Approximately 20000 elastic events were obtained at each of four momenta with an angular coverage of 0.9≥cosθc.m.≥−0.9. The data are intended to aid in phase-shift analyses of the resonances causing the bump in the total cross section and to study dip structures at constant values of the Mandelstam variables t and u.

3 data tables match query

No description provided.

LEGENDRE POLYNOMIAL COEFFICIENTS.

FROM INTEGRATING LEGENDRE POLYNOMIAL FIT TO D(SIG)/DOMEGA. QUOTED ERRORS INCLUDE NORMALIZATION AND FITTING UNCERTAINTIES.


Inclusive jet cross-section in anti-p p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 68 (1992) 1104-1108, 1992.
Inspire Record 319237 DOI 10.17182/hepdata.19883

We present a measurement of the inclusive jet cross section in p¯p collisions at √s =1.8 TeV at the Fermilab Tevatron using the Collider Detector at Fermilab. Good agreement is seen with the predictions of recent next-to-leading-order [O(αs3)] QCD predictions. The dependence of the cross section on clustering cone size is reported for the first time. An improved limit on Λc, a term characterizing possible quark substructure, is set at 1.4 TeV (95% C.L.).

1 data table match query

Data are averaged over the pseudorapidity interval 0.1 to 0.7.


Measurement of the Reactions $e^+ e^- \to \mu^+ \mu^-$ and $e^+ e^- \to \tau^+ \tau^-$ Between $\sqrt{s}=50$-{GeV} and 60.8-{GeV}

The VENUS collaboration Abe, K. ; Amako, K. ; Arai, Y. ; et al.
Z.Phys.C 48 (1990) 13-22, 1990.
Inspire Record 294672 DOI 10.17182/hepdata.38414

The angular distributions of the reactione+e−→μ+μ− ande+e+→τ+τ− have been measured between\(\sqrt s= 50\) and 60.8 GeV with the VENUS detector at TRISTAN. The average total cross section and the forward-backward charge asymmetry for μ-pair production are observed to be 28.3±1.4±0.8 pb and (−29.0−4.8+5.0±0.5)%, and those for τ-pair production are 27.6±1.7±1.0 pb and (−32.8−6.2+6.4±1.5)% at\(\langle \sqrt s \rangle \). These values are consistent with the predictions of the standard model of electroweak interactions.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Inclusive jet cross sections in the Breit frame in neutral current deep inelastic scattering at HERA and determination of alpha(s).

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 547 (2002) 164-180, 2002.
Inspire Record 593409 DOI 10.17182/hepdata.46572

Inclusive jet differential cross sections have been measured in neutral current deep inelastic e+p scattering for boson virtualities Q**2>125 GeV**2. The data were taken using the ZEUS detector at HERA and correspond to an integrated luminosity of 38.6 pb-1. Jets were identified in the Breit frame using the longitudinally invariant K_T cluster algorithm. Measurements of differential inclusive jet cross sections are presented as functions of jet transverse energy (E_T,jet), jet pseudorapidity and Q**2, for jets with E_T,jet>8 GeV. Next-to-leading-order QCD calculations agree well with the measurements both at high Q**2 and high E_T,jet. The value of alpha_s(M_Z), determined from an analysis of dsigma/dQ**2 for Q**2>500 GeV**2, is alpha_s(M_Z) = 0.1212 +/- 0.0017 (stat.) +0.0023 / -0.0031 (syst.) +0.0028 / -0.0027 (th.).

9 data tables match query

Inclusive jet cross section DSIG/DQ**2 for jets of hadrons in the Breit frame.

Inclusive jet cross section DSIG/DET for jets of hadrons in the Breit frame.

Inclusive jet cross section DSIG/DETARAP for jets of hadrons in the Breit frame.

More…

Measurement of the open-charm contribution to the diffractive proton structure function.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Nucl.Phys.B 672 (2003) 3-35, 2003.
Inspire Record 624128 DOI 10.17182/hepdata.43831

Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta < 0.8, p_T(D*+/-) > 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.

18 data tables match query

Total cross section for diffractive D*+- production in the stated kinematicregion.. The second DSYS uncertainty arises from the subtraction of the proton-dissociative background.

The differential cross section as a function of X(NAME=POMERON).

The differential cross section as a function of transverse momentum.

More…

Measurement of high-Q**2 charged-current e+ p deep inelastic scattering cross sections at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 411-428, 2000.
Inspire Record 503434 DOI 10.17182/hepdata.43950

The e^+p charged-current deep inelastic scattering cross sections, $d\sigma/dQ^2$ for Q^2 between 200 and 60000 GeV^2, and $d\sigma/dx$ and $d\sigma/dy$ for Q^2 > 200 GeV^2, have been measured with the ZEUS detector at HERA. A data sample of 47.7 pb^-1, collected at a center-of-mass energy of 300 GeV, has been used. The cross section $d\sigma/dQ^2$ falls by a factor of about 50000 as Q^2 increases from 280 to 30000 GeV^2. The double differential cross section $d^2\sigma/dxdQ^2$ has also been measured. A comparison between the data and Standard Model (SM) predictions shows that contributions from antiquarks ($\bar{u}$ and $\bar{c}$) and quarks (d and s) are both required by the data. The predictions of the SM give a good description of the full body of the data presented here. A comparison of the charged-current cross section $d\sigma/dQ^2$ with the recent ZEUS results for neutral-current scattering shows that the weak and electromagnetic forces have similar strengths for Q^2 above $M^2_W, M^2_Z$. A fit to the data for $d\sigma/dQ^2$ with the Fermi constant $G_F$ and $M_W$ as free parameters yields $G_F = (1.171 \pm 0.034 (stat.) ^{+0.026}_{-0.032} (syst.) ^{+0.016}_{-0.015} (PDF)) \times 10^{-5} GeV^{-2}$ and $M_W = 80.8 ^{+4.9}_{-4.5} (stat.) ^{+5.0}_{-4.3} (syst.) ^{+1.4}_{-1.3} (PDF) GeV$. Results for $M_W$, where the propagator effect alone or the SM constraint between $G_F$ and $M_W$ have been considered, are also presented.

11 data tables match query

The differential cross section DSIG/DQ**2.

The differential cross section DSIG/DX.

The differential cross section DSIG/DY.

More…

Measurement of D*+- production in deep inelastic e+- p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Rev.D 69 (2004) 012004, 2004.
Inspire Record 626816 DOI 10.17182/hepdata.46419

Inclusive production of $D^*(2010)$ mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.9 pb$^{-1}$. The decay channel $D^{* +}\to D^0 \pi^+ $ with $D^0\to K^-\pi^+$ and corresponding antiparticle decay were used to identify $D^*$ mesons. Differential $D^*$ cross sections with $1.5<Q^2<1000$ GeV$^2$ and $0.02<y<0.7$ in the kinematic region $1.5<p_T(D^*)<15$ GeV and $|\eta(D^*)|<1.5$ are compared to different QCD calculations incorporating different parameterisations of the parton densities in the proton. The data show sensitivity to the gluon distribution in the proton and are reasonably well described by next-to-leading-order QCD with the ZEUS NLO QCD fit used as the input parton density in the proton. The observed cross section is extrapolated to the full kinematic region in $p_T(D^*)$ and $\eta(D^*)$ in order to determine the open-charm contribution, $F_2^{\rm charm}(x,Q^2)$, to the proton structure function, $F_2$. Since, at low $Q^2$, the uncertainties of the data are comparable to those from the QCD fit, the measured differential cross sections in $y$ and $Q^2$ should be used in future fits to constrain the gluon density.

17 data tables match query

Overall total cross section. The second DSYS error is due to the uncertainty in the BR for D* and D0 decay.

Measured differential cross section as a function of Q**2.

Measured differential cross section as a function of X.

More…