We present a direct measurement of the parity-violation parameter $A_c$ in the coupling of the $Z^0$ to $c$-quarks with the SLD detector. The measurement is based on a sample of 530k hadronic $Z^0$ decays, produced with a mean electron-beam polarization of $|P_e| = 73 %$. The tagging of $c$-quark events is performed using two methods: the exclusive reconstruction of $D^{\ast+}$, $D^+$, and $D^0$ mesons, and the soft-pions ($\pi_s$) produced in the decay of $D^{\ast+}\to D^0 \pi_s^+$. The large background from $D$ mesons produced in $B$ hadron decays is separated efficiently from the signal using precision vertex information. The combination of these two methods yields $A_c = 0.688 \pm 0.041.$
CONST(NAME=A_C) is connected with the forward-backward asymmetry by following way: ASYM(NAME=FB) = ABS(P_e)*CONST(NAME=A_C)*2z/(1 + z**2), where z = cos(theta), theta is the polar angle of the outgoing fermion relative to the incident electron, P_e is the longitudinal polarization of the electron beam. Two values for constant A_c were obtained using two different c-quark tagging methods: exclusive charmed-meson reconstruction (C=EXCLUSIVE) and inclusive soft-pion analysis (C=SOFT_PIONS).
We have studied the production of charged D ∗ mesons in e + e − annihilation at an average center-of-mass energy of 58.0 GeV. Charged D ∗ mesons were identified using two independent methods; the mass-difference method and the detection of the low transverse-momentum pion. The forward-backward asymmetry of the charm quark production was measured to be A c = −0.61±0.13(stat.)±0.08(syst.). The cross section of inclusive D ∗ production was found to be σ(e + e − →D ∗ ± +X) = 24.5 ± 5.3 ( stat. )±3.0( syst. ) pb. If we assume the standard model prediction for the charm quark production, we obtain the branching ratio for the charm quark to produce a charged D ∗ meson to be Br (c→D ∗+ + X) = (22±5( stat. )±3( syst. ))% .
No description provided.
The angular distributions of the reactione+e−→μ+μ− ande+e+→τ+τ− have been measured between\(\sqrt s= 50\) and 60.8 GeV with the VENUS detector at TRISTAN. The average total cross section and the forward-backward charge asymmetry for μ-pair production are observed to be 28.3±1.4±0.8 pb and (−29.0−4.8+5.0±0.5)%, and those for τ-pair production are 27.6±1.7±1.0 pb and (−32.8−6.2+6.4±1.5)% at\(\langle \sqrt s \rangle \). These values are consistent with the predictions of the standard model of electroweak interactions.
No description provided.
No description provided.
No description provided.
Sixty-two charm events have been observed in an exposure of the SLAC Hybrid Facility toa backward sacttered laser beam. Based on 22 neutral and 21 charged decays we have measured the charmed-meson lifetimes to be τD0=(6.8−1.8+2.3)×10−13 sec, τD±=(7.4−2.0+2.3)×10−13 sec and their ratio τD±τD0=1.1−0.3+0.6. The inclusive charm cross section at a photon energy of 20 GeV has been measured to be 56−23+24 nb. Evidence is presented for a non-DD¯ component to charm production, consistent with (35±20)% Λc+ production and some D*± production. We have found no unambiguous F decays.
We report on an experiment to obtain differential cross sections for K+p elastic scattering in the vicinity of the possible exotic baryon, the Z1*(1900). The differential cross sections are based on typically 70 000 selected events in the angular region −0.9≤cosθc.m.≤0.9 at each of 22 momenta from 0.865 to 2.125 GeV/c. The data are intended for use in partial-wave analysis to search for the Z1*.
No description provided.
No description provided.
No description provided.
None
SIG*Br(UPSI --> MU+ MU-).
SIG*Br(UPSI --> MU+ MU-).
Using the VENUS detector at TRISTAN we have investigated the charm-quark production by detecting D*+ - mesons in the two-photon process of e+et - collisions. The study has confirmed that the charm-quark production rate is larger than that predicted from direct cc̅ production alone. The distribution of the transverse momentum of the D*+ t- mesons and the forward energy flow associated with the D*+ - production suggest that the main part of the observed excess comes from the contribution of a resolved photon process.
D* production cross section in the given kinematic ranges under the anti-tagging condition |cos(theta(e+-))|>0.990.
We present measurements of the bottom-quark production cross sections in pp¯ collisions at √s =1.8 TeV. From the inclusive electron production rate, we have determined the bottom-quark production cross sections to be 1010±270, 168±43, 37±10 nb for the rapidity range of ‖yb‖<1.0 and the transverse momentum ranges of pTb>15, 23, 32 GeV/c, respectively. In addition, from the associated electron-D0 production rate, we have determined the bottom-quark cross section to be 364±80(stat)±95(syst) nb for ‖yb‖<1.0 and pTb>19 GeV/c.
From the inclusive electron production rate.
From the associated electron-D0 production rate.
Results from a high-statistics experiment involving an exposure of the SLAC 82-in. hydrogen bubble chamber to a beam of 8-GeV/c π− yielding a final state of π−π+π−p are presented. Copious production of ρ, Δ++, and f is found. Considerable quasi-two-body production in which one particle decays to one of the above resonances is also observed. Some double-resonance production involving baryon and meson resonances is also seen. The production properties of ρ, Δ++, and f mesons are well described by a double-Regge model.
No description provided.
We have studied inclusive production of KS0, Λ, and Λ¯ particles in 20-GeV γp interactions and have found features similar to those observed in both hadronic and leptonic interactions. The production cross sections, charged-particle multiplicities, and average Λ polarization are reported. Inclusive distributions of x and pT are shown and discussed in terms of quark fragmentation models. Production cross sections for K*(890) and Σ*(1385) are also reported.
No description provided.
No description provided.
No description provided.