An improved direct measurement of leptonic coupling asymmetries with polarized Z bosons.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Rev.Lett. 86 (2001) 1162-1166, 2001.
Inspire Record 534735 DOI 10.17182/hepdata.41720

We present final measurements of the Z boson-lepton coupling asymmetry parameters Ae, Amu, and Atau with the complete sample of polarized Z bosons collected by the SLD detector at the SLAC Linear Collider. From the left-right production and decay polar angle asymmetries in leptonic Z decays we measure Ae = 0.1544 +- 0.0060, Amu = 0.142 +- 0.015, and Atau = 0.136 +- 0.015. Combined with our left-right asymmetry measured from hadronic decays, we find Ae = 0.1516 +- 0.0021. Assuming lepton universality, we obtain a combined effective weak mixing angle of sin**2 theta^{eff}_W = 0.23098 +- 0.00026.

1 data table

No description provided.


OBSERVATION OF ANOMALOUS PRODUCTION OF MUON PAIRS IN e+ e- ANNIHILATION INTO FOUR LEPTON FINAL STATES

The AMY collaboration Ho, Y.H. ; Kurihara, Y. ; Omori, T. ; et al.
Phys.Lett.B 244 (1990) 573-579, 1990.
Inspire Record 294829 DOI 10.17182/hepdata.51362

We report results of a study of four-lepton final states produced in e + e − collisions at center-of-mass energies from 50 to 61.4 GeV using the AMY detector at the TRISTAN collider. For the cases where two or three charged tracks are produced at large angles relative to the beam direction, the cross sections agree with QED. However, we observe an excess of e + e − → e + e − μ + μ − events with four tracks at wide angles and with dimuon mass less than 1.0 GeV / c 2 .

1 data table

No description provided.


Measurement of sigma B (W ---> e neutrino) and sigma B (Z0 ---> e+ e-) in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 76 (1996) 3070-3075, 1996.
Inspire Record 399854 DOI 10.17182/hepdata.50120

We present a measurement of $\sigma \cdot B(W \rightarrow e \nu)$ and $\sigma \cdot B(Z~0 \rightarrow e~+e~-)$ in proton - antiproton collisions at $\sqrt{s} =1.8$ TeV using a significantly improved understanding of the integrated luminosity. The data represent an integrated luminosity of 19.7 pb$~{-1}$ from the 1992-1993 run with the Collider Detector at Fermilab (CDF). We find $\sigma \cdot B(W \rightarrow e \nu) = 2.49 \pm 0.12$nb and $\sigma \cdot B(Z~0 \rightarrow e~+e~-) = 0.231 \pm 0.012$nb.

1 data table

First systematic error is due to detector effects, the second is due to uncertainty in the luminosity.


Forward - backward charge asymmetry of electron pairs above the Z0 pole

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 2616-2621, 1996.
Inspire Record 417098 DOI 10.17182/hepdata.50121

We present a measurement of the forward-backward charge asymmetry of the process pp¯→Z0/γ+X,Z0/γ→e+e− at Mee>MZ, using 110pb−1 of data at s=1.8TeV collected at the Collider Detector at Fermilab. The measured charge asymmetries are 0.43±0.10 in the invariant mass region Mee>105GeV/c2, and 0.070±0.016 in the region 75<Mee<105GeV/c2. These results are consistent with the standard model values of 0.528±0.009 and 0.052±0.002, respectively.

1 data table

The forward-backward asymmetry resuts from angular differential cross section : D(SIG)/D(COS(THETA*) = A*(1 + COS(THETA*)**2) + B*COS(THETA*), where THETA * is the emission angle of the E- relative to the quark momentum in the rest frame of the E+ E- pair.


Measurement of K^+K^- production in two-photon collisions in the resonant-mass region

The Belle collaboration Abe, Kazuo ; Abe, Koya ; Abe, T. ; et al.
Eur.Phys.J.C 32 (2003) 323-336, 2003.
Inspire Record 629334 DOI 10.17182/hepdata.50324

K^+K^- production in two-photon collisions has been studied using a large data sample of 67 fb^{-1} accumulated with the Belle detector at the KEKB asymmetric e^+e^- collider. We have measured the cross section for the process gamma gamma -> K^+ K^- for center-of-mass energies between 1.4 and 2.4 GeV, and found three new resonant structures in the energy region between 1.6 and 2.4 GeV. The angular differential cross sections have also been measured.

8 data tables

Cross section for two photon production of K+ K- in the polar angular region ABS(COS(THETA*)) < 0.6.

Differential cross sections DSIG/DCOS(THETA) for the W range 1.40 to 1.56 GeV.. Statistical errors only.

Differential cross sections DSIG/DCOS(THETA) for the W range 1.56 to 1.72 GeV.. Statistical errors only.

More…

Measurements of the proton and deuteron spin structure functions g1 and g2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.D 58 (1998) 112003, 1998.
Inspire Record 467140 DOI 10.17182/hepdata.22265

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.

33 data tables

Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

More…

Measurement of the neutron spin structure function g2(n) and asymmetry A2(n).

The E154 collaboration Abe, K. ; Akagi, T. ; Anderson, B.D. ; et al.
Phys.Lett.B 404 (1997) 377-382, 1997.
Inspire Record 443408 DOI 10.17182/hepdata.27082

We have measured the neutron structure function g$_{2}^{n}$ and the virtual photon-nucleon asymmetry A$_{2}^{n}$ over the kinematic range $0.014\leq x \leq 0.7$ and $1.0 \leq Q^{2} \leq 17.0$ by scattering 48.3 GeV longitudinally polarized electrons from polarized $^{3}$He. Results for A$_{2}^{n}$ are significantly smaller than the $\sqrt{R}$ positivity limit over most of the measured range and data for g$_2^{n}$ are generally consistent with the twist-2 Wandzura-Wilczek prediction. Using our measured g$_{2}^{n}$ we obtain results for the twist-3 reduced matrix element $d_{2}^{n}$, and the integral $\int$g$_{2}^{n}(x)dx$ in the range $0.014\leq x \leq 1.0$. Data from this experiment are combined with existing data for g$_{2}^{n}$ to obtain an average for $d_{2}^{n}$ and the integral $\int$g$_{2}^{n}(x)dx$.

4 data tables

Data measured using the 2.75 degree spectrometer.

Data measured using the 5.5 degree spectrometer.

Measured value of the twist-3 reduced matrix element D2.

More…

Next-to-leading order QCD analysis of polarized deep inelastic scattering data.

The E154 collaboration Abe, K. ; Akagi, T. ; Anderson, B.D. ; et al.
Phys.Lett.B 405 (1997) 180-190, 1997.
Inspire Record 443186 DOI 10.17182/hepdata.27078

We present a Next-to-Leading order perturbative QCD analysis of world data on the spin dependent structure functions $g_1^p, g_1^n$, and $g_1^d$, including the new experimental information on the $Q^2$ dependence of $g_1^n$. Careful attention is paid to the experimental and theoretical uncertainties. The data constrain the first moments of the polarized valence quark distributions, but only qualitatively constrain the polarized sea quark and gluon distributions. The NLO results are used to determine the $Q^2$ dependence of the ratio $g_1/F_1$ and evolve the experimental data to a constant $Q^2 = 5 GeV^2$. We determine the first moments of the polarized structure functions of the proton and neutron and find agreement with the Bjorken sum rule.

7 data tables

Data from the 2.75 degree spectrometer.

Data from the 2.75 degree spectrometer evolved to a mean Q**2 of 5 GeV**2 using the MSBAR parameterization. The second systematic error is due to the evolution.

Data from the 5.5 degree spectrometer.

More…

Measurements of R = $\sigma$(L)/sigma(T) for 0.03 < x < 0.1 and fit to world data.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Lett.B 452 (1999) 194-200, 1999.
Inspire Record 475305 DOI 10.17182/hepdata.28090

Measurements were made at SLAC of the cross section for scattering 29 GeV electrons from carbon at a laboratory angle of 4.5 degrees, corresponding to 0.03&lt;x&lt;0.1 and 1.3&lt;Q^2&lt;2.7 GeV^2. Values of R=sigma_L/sigma_T were extracted in this kinematic range by comparing these data to cross sections measured at a higher beam energy by the NMC collaboration. The results are in reasonable agreement with pQCD calculations and with extrapolations of the R1990 parameterization of previous data. A new fit is made including these data and other recent results.

1 data table

LOOP-OVER;.


Determination of electroweak parameters from the elastic scattering of muon-neutrinos and anti-neutrinos on electrons

Ahrens, L.A. ; Aronson, S.H. ; Connolly, P.L. ; et al.
Phys.Rev.D 41 (1990) 3297-3316, 1990.
Inspire Record 306084 DOI 10.17182/hepdata.22936

Total and differential cross sections for νμe→νμe and ν¯μe→ν¯μe are measured. Values for the model-independent neutral-current couplings of the electron are found to be gV=−0.107±0.035(stat)±0.028(syst) and gA=−0.514±0.023(stat)±0.028(syst). The electroweak mixing parameter sin2θW is determined to be 0.195±0.018(stat)±0.013(syst). Limits are set for the charge radius and magnetic moment of the neutrino as (〈r2〉)<0.24×10−32 cm2 and fμ<0.85×10−9 Bohr magnetons, respectively.

3 data tables

No description provided.

No description provided.

No description provided.