Date

Search for b hadron decays to long-lived particles in the CMS endcap muon detectors

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-EXO-24-004, 2025.
Inspire Record 2958479 DOI 10.17182/hepdata.157009

A search for long-lived particles originating from the decay of b hadrons produced in proton-proton collisions with a center-of-mass energy of 13 TeV at the LHC is presented. The analysis is performed on a data set recorded in 2018, corresponding to an integrated luminosity of 41.6 fb$^{-1}$. Interactions of the long-lived particles in the CMS endcap muon system would create hadronic or electromagnetic showers, producing clusters of detector hits. Selected events contain at least one such high-multiplicity cluster in the muon endcaps and require the presence of a displaced muon. The most stringent upper limits to date on the branching fraction $\mathcal{B}$(B $\to$ K$Φ$), where the long-lived particle $Φ$ decays to a pair of hadrons, are obtained for $Φ$ masses of 0.3$-$3.0 GeV and $Φ$ mean proper decay lengths in the range of 1$-$500 cm.

14 data tables

Distributions of the CSC cluster time shown for signal samples with m = 0.3 GeV, c$\tau_{\Phi}$ = 100 mm, m = 1.0 GeV, c$\tau_{\Phi}$ = 300 mm, m = 2.0 GeV, c$\tau_{\Phi}$ = 1000 mm and the background-enriched data.

Distributions of the CSC cluster size $N_{hits}$ shown for signal samples with m = 0.3 GeV, c$\tau_{\Phi}$ = 100 mm, m = 1.0 GeV, c$\tau_{\Phi}$ = 300 mm, m = 2.0 GeV, c$\tau_{\Phi}$ = 1000 mm and the background-enriched data.

Distributions of the $\Delta\Phi$ between the CSC cluster and the trigger muon, shown for signal samples with m = 0.3 GeV c$\tau_{\Phi}$ = 100 mm, m = 1.0 GeV c$\tau_{\Phi}$ = 300 mm, m = 2.0 GeV c$\tau_{\Phi}$ = 1000 mm and the background-enriched data.

More…

First exclusive reconstruction of the B$^{*+}$, B$^{*0}$, and B$^{*0}_\text{s}$ mesons and precise measurement of their masses

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-BPH-24-011, 2025.
Inspire Record 2958462 DOI 10.17182/hepdata.159543

Using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016$-$2018, corresponding to an integrated luminosity of 140 fb$^{-1}$, the first full reconstruction of the three vector B meson states, B$^{*+}$, B$^{*0}$, and B$^{*0}_\text{s}$, is performed. The mass differences between the excited mesons and their corresponding ground states are measured to be $m(\text{B}^{*+})-m(\text{B}^+)$ = 45.277 $\pm$ 0.039 $\pm$ 0.027 MeV, $m(\text{B}^{*0})- m(\text{B}^0)$ = 45.471 $\pm$ 0.056 $\pm$ 0.028 MeV, and $m(\text{B}^{*0}_\text{s})-m(\text{B}_\text{s})$ = 49.407 $\pm$ 0.132 $\pm$ 0.041 MeV, where the first uncertainties are statistical and the second are systematic. These results improve on the precision of previous measurements by an order of magnitude.

5 data tables

The measured mass differences between vector and ground B meson states.

Extracted masses of $\mathrm{B}^{*+}$, $\mathrm{B}^{*0}$, and $\mathrm{B}^{*0}_{\mathrm{s}}$ mesons. The values are obtained using the measurements in Table 1 and the ground state masses from PDG 2024 (S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)), which are the source of the last uncertainties.

Extracted mass differences between vector B meson states of different flavour. The values are obtained using the measurements in Table 4 and the ground state mass differences from PDG 2024 (S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)), which are the source of the last uncertainties.

More…

Search for resonant production of pairs of dijet resonances through broad mediators in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-EXO-24-038, 2025.
Inspire Record 2954159 DOI 10.17182/hepdata.159918

A reinterpretation of a prior narrow-resonance search is performed to investigate the resonant production of pairs of dijet resonances via broad mediators. This analysis targets events with four resolved jets, requiring dijet invariant masses greater than 0.2 TeV and four-jet invariant masses greater than 1.6 TeV. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at $\sqrt{s}$ = 13 TeV. The reinterpretation considers the production of new heavy four-jet resonances, with widths ranging from 1.5 to 10% of their mass, which decay to a pair of dijet resonances. This analysis probes resonant production in the four-jet and dijet mass distributions. Upper limits at 95% confidence level and significances are reported on the production cross section of new resonances as functions of their widths and masses, between 2 and 10 TeV. In particular, at a four-jet resonance mass of 8.6 TeV, the local (global) significance ranges from 3.9 (1.6) to 3.6 (1.4) standard deviations (s.d.) as the resonance width is increased from 1.5 to 10%. This relative insensitivity to the choice of width indicates that a broad resonance is an equally valid interpretation of this excess. The broad resonance hypothesis at a resonance mass of 8.6 TeV is supported by the presence of an event with a four-jet mass of 5.8 TeV and an average dijet mass of 2.0 TeV. Also, we report the reinterpretation of a second effect, at a four-jet resonance mass of 3.6 TeV, which has a local (global) significance of up to 3.9 (2.2) s.d.

51 data tables

Observed number of events within bins of the four-jet mass and the average mass of the two dijets.

Observed number of events within bins of the four-jet mass and the ratio $\alpha$, which is the average dijet mass divided by the four-jet mass.

Predictions of a leading order (LO) QCD simulation, normalized to an integrated luminosity of 138 fb$^{-1}$. The number of events are examined within bins of the four-jet mass and the average mass of the two dijets.

More…

Probing the flavour structure of dimension-6 EFT operators in multilepton final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-TOP-23-009, 2025.
Inspire Record 2953423 DOI 10.17182/hepdata.157849

An analysis of the flavour structure of dimension-6 effective field theory (EFT) operators in multilepton final states is presented, focusing on the interactions involving Z bosons. For the first time, the flavour structure of these operators is disentangled by simultaneously probing the interactions with different quark generations. The analysis targets the associated production of a top quark pair and a Z boson, as well as diboson processes in final states with at least three leptons, which can be electrons or muons. The data were recorded by the CMS experiment in the years 2016$-$2018 in proton-proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 138 fb$^{-1}$. Consistency with the standard model of particle physics is observed and limits are set on the selected Wilson coefficients, split into couplings to light- and heavy-quark generations.

0 data tables

Search for heavy pseudoscalar and scalar bosons decaying to a top quark pair in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-HIG-22-013, 2025.
Inspire Record 2942928 DOI 10.17182/hepdata.159298

A search for pseudoscalar or scalar bosons decaying to a top quark pair ($\mathrm{t\bar{t}}$) in final states with one or two charged leptons is presented. The analyzed proton-proton collision data was recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. The invariant mass $m_\mathrm{t\bar{t}}$ of the reconstructed $\mathrm{t\bar{t}}$ system and variables sensitive to its spin and parity are used to discriminate against the standard model $\mathrm{t\bar{t}}$ background. Interference between pseudoscalar or scalar boson production and the standard model $\mathrm{t\bar{t}}$ continuum is included, leading to peak-dip structures in the $m_\mathrm{t\bar{t}}$ distribution. An excess of the data above the background prediction, based on perturbative quantum chromodynamics (QCD) calculations, is observed near the kinematic $\mathrm{t\bar{t}}$ production threshold, while good agreement is found for high $m_\mathrm{t\bar{t}}$. The data are consistent with the background prediction if the contribution from the production of a color-singlet ${}^1\mathrm{S}_0^{[1]}$$\mathrm{t\bar{t}}$ quasi-bound state $η_\mathrm{t}$, predicted by nonrelativistic QCD, is added. Upper limits at 95% confidence level are set on the coupling between the pseudoscalar or scalar bosons and the top quark for boson masses in the range 365$-$1000 GeV, relative widths between 0.5 and 25%, and two background scenarios with or without $η_\mathrm{t}$ contribution.

919 data tables

Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.

Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.

Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.

More…

Low-mass vector-meson production at forward rapidity in $p$$+$$p$ and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
2025.
Inspire Record 2942761 DOI 10.17182/hepdata.165500

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low-mass vector-meson ($ω+ρ$ and $ϕ$) production through the dimuon decay channel at forward rapidity $(1.2<|\mbox{y}|<2.2)$ in $p$$+$$p$ and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. The low-mass vector-meson yield and nuclear-modification factor were measured as a function of the average number of participating nucleons, $\langle N_{\rm part}\rangle$, and the transverse momentum $p_T$. These results were compared with those obtained via the kaon decay channel in a similar $p_T$ range at midrapidity. The nuclear-modification factors in both rapidity regions are consistent within the uncertainties. A comparison of the $ω+ρ$ and $J/ψ$ mesons reveals that the light and heavy flavors are consistently suppressed across both $p_T$ and ${\langle}N_{\rm part}\rangle$. In contrast, the $ϕ$ meson displays a nuclear-modification factor consistent with unity, suggesting strangeness enhancement in the medium formed.

0 data tables

Measurement of inclusive jet cross section and substructure in $p$+$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 111 (2025) 112008, 2025.
Inspire Record 2820229 DOI 10.17182/hepdata.158374

The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.

0 data tables

Determination of the spin and parity of all-charm tetraquarks

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-BPH-24-002, 2025.
Inspire Record 2931712 DOI 10.17182/hepdata.158584

The traditional quark model accounts for the existence of baryons, such as protons and neutrons, which consist of three quarks, as well as mesons, composed of a quark-antiquark pair. Only recently has substantial evidence started to accumulate for exotic states composed of four or five quarks and antiquarks. The exact nature of their internal structure remains uncertain. This paper reports the first measurement of quantum numbers of the recently discovered family of three all-charm tetraquarks, using data collected by the CMS experiment at the Large Hadron Collider from 2016 to 2018. The angular analysis techniques developed for the discovery and characterization of the Higgs boson have been applied to the new exotic states. The quantum numbers for parity $P$ and charge conjugation $C$ symmetries are found to be +1. The spin $J$ of these exotic states is consistent with 2$\hbar$, while 0$\hbar$ and 1$\hbar$ are excluded at 95% and 99% confidence level, respectively. The $J^{PC}=2^{++}$ assignment implies particular configurations of constituent spins and orbital angular momenta, which constrain the possible internal structure of these tetraquarks.

4 data tables

Summary of statistical tests.

Results from hypothesis test for pairs of spin-parity models.

The $\mathrm{J}/\psi\mathrm{J}/\psi$ invariant mass distribution in data.

More…

New constraints on cosmic ray-boosted dark matter from the LUX-ZEPLIN experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
Phys.Rev.Lett. 134 (2025) 241801, 2025.
Inspire Record 2903333 DOI 10.17182/hepdata.157863

While dual-phase xenon time projection chambers (TPCs) have driven the sensitivity towards weakly interacting massive particles (WIMPs) at the GeV/c^2 to TeV/c^2 mass scale, the scope for sub-GeV/c^2 dark matter particles is hindered by a limited nuclear recoil energy detection threshold. One approach to probe for lighter candidates is to consider cases where they have been boosted by collisions with cosmic rays in the Milky Way, such that the additional kinetic energy lifts their induced signatures above the nominal threshold. In this Letter, we report first results of a search for cosmic ray-boosted dark matter (CRDM) with a combined 4.2 tonne-year exposure from the LUX-ZEPLIN (LZ) experiment. We observe no excess above the expected backgrounds and establish world-leading constraints on the spin-independent CRDM-nucleon cross section as small as 3.9 * 10^{-33} cm^2 at 90% confidence level for sub-GeV/c^2 masses.

1 data table

90% CL CRDM-nucleon cross sections


Search for $CP$ violation in events with top quarks and Z bosons at $\sqrt{s}$ = 13 and 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-TOP-24-012, 2025.
Inspire Record 2925585 DOI 10.17182/hepdata.157847

A search for the violation of the charge-parity ($CP$) symmetry in the production of top quarks in association with Z bosons is presented, using events with at least three charged leptons and additional jets. The search is performed in a sample of proton-proton collision data collected by the CMS experiment at the CERN LHC in 2016-2018 at a center-of-mass energy of 13 TeV and in 2022 at 13.6 TeV, corresponding to a total integrated luminosity of 173 fb$^{-1}$. For the first time in this final state, observables that are odd under the $CP$ transformation are employed. Also for the first time, physics-informed machine-learning techniques are used to construct these observables. While for standard model (SM) processes the distributions of these observables are predicted to be symmetric around zero, $CP$-violating modifications of the SM would introduce asymmetries. Two $CP$-odd operators $\mathcal{O}_\text{tW}^\text{I}$ and $\mathcal{O}_\text{tZ}^\text{I}$ in the SM effective field theory are considered that may modify the interactions between top quarks and electroweak bosons. The obtained results are consistent with the SM prediction within two standard deviations, and exclusion limits on the associated Wilson coefficients of $-$2.7 $\lt$$c_\text{tW}^\text{I}$$\lt$ 2.5 and $-$0.2 $\lt$$c_\text{tZ}^\text{I}$$\lt$ 2.0 are set at 95% confidence level. The largest discrepancy is observed in $c_\text{tZ}^\text{I}$ where data is consistent with positive values, with an observed local significance with respect to the SM hypothesis of 2.5 standard deviations, when only linear terms are considered.

6 data tables

Distribution of the discretized $c_{\mathrm{tW}}^{\mathrm{I}}$ score for events in the $c_{\mathrm{tW}}^{\mathrm{I}}$-like category in tZq events. The contributions from the SM, linear, and quadratic terms when $c_{\mathrm{tW}}^{\mathrm{I}}$ is set to unity are plotted separately.

Distribution of the discretized $c_{\mathrm{tZ}}^{\mathrm{I}}$ score for events in the $c_{\mathrm{tZ}}^{\mathrm{I}}$-like category in $t\bar{t}Z$ events. The contributions from the SM, linear, and quadratic terms when $c_{\mathrm{tZ}}^{\mathrm{I}}$ is set to unity are plotted separately.

Distribution of the discretized $c_{\mathrm{tW}}^{\mathrm{I}}$ score for events in the $c_{\mathrm{tW}}^{\mathrm{I}}$-like category, compared with the predictions obtained when all fit parameters are set to their maximum likelihood value in the linear fit.

More…