Summary data on elastic $pp$ and $pd$ scattering at small angles and the real part of the $pn$-scattering amplitude in the energy interval 1-10 BeV

Dalkhazhav, N. ; Devinski, P.A. ; Zayachki, V.I. ; et al.
Sov.J.Nucl.Phys. 8 (1969) 196-202, 1969.
Inspire Record 1392874 DOI 10.17182/hepdata.69719

None

32 data tables

RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.

TABLE 1 (REF. 1 ).

RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.

More…

Elastic scattering $\pi^{+} + p$ at 1.0 GeV

Bidan, U. ; Waloschek, P. ; Lévy, F. ; et al.
Nuovo Cim. 24 (1962) 334-342, 1962.
Inspire Record 1185006 DOI 10.17182/hepdata.37718

The angular distribution π+-p at 1.0 GeV was determined on the basis of l032 events measured in a propane bubble chamber. Comparison is made with data of 820 and 900 MeV and with angular distributions π−+p at similar energies.

1 data table

No description provided.


Elastic scattering of 96 MeV neutrons from iron, yttrium, and lead

Ohrn, A. ; Blomgren, J. ; Andersson, P. ; et al.
Phys.Rev.C 77 (2008) 024605, 2008.
Inspire Record 779805 DOI 10.17182/hepdata.25213

Data on elastic scattering of 96 MeV neutrons from Fe56, Y89, and Pb208 in the angular interval 10−70° are reported. The previously published data on Pb208 have been extended, as a new method has been developed to obtain more information from data, namely to increase the number of angular bins at the most forward angles. A study of the deviation of the zero-degree cross section from Wick's limit has been performed. It was shown that the data on Pb208 are in agreement with Wick's limit while those on the lighter nuclei overshoot the limit significantly. The results are compared with modern optical model predictions, based on phenomenology and microscopic nuclear theory. The data on Fe56, Y89, and Pb208 are in general in good agreement with the model predictions.

3 data tables

Measured differential cross section for elastic scattering on the FE target.

Measured differential cross section for elastic scattering on the Y target.

Measured differential cross section for elastic scattering on the PB target.


Measurement of the Absolute Differential Cross Section for np Elastic Scattering at 194 MeV

Sarsour, M. ; Peterson, T. ; Planinic, M. ; et al.
Phys.Rev.C 74 (2006) 044003, 2006.
Inspire Record 710735 DOI 10.17182/hepdata.31683

A tagged medium-energy neutron beam has been used in a precise measurement of the absolute differential cross section for np back-scattering. The results resolve significant discrepancies within the np database concerning the angular dependence in this regime. The experiment has determined the absolute normalization with 1.5% uncertainty, suitable to verify constraints of supposedly comparable precision that arise from the rest of the database in partial wave analyses. The analysis procedures, especially those associated with evaluation of systematic errors in the experiment, are described in detail so that systematic uncertainties may be included in a reasonable way in subsequent partial wave analysis fits incorporating the present results.

1 data table

Final differential cross sections averaged over data samples.


pi+- p differential cross sections at low energies.

Denz, H. ; Amaudruz, P. ; Brack, J.T. ; et al.
Phys.Lett.B 633 (2006) 209-213, 2006.
Inspire Record 699647 DOI 10.17182/hepdata.31620

Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.

12 data tables

Elastic PI- P cross section for incident kinetic energy 43.3 MeV for the rotated target data. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 43.3 MeV. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 37.1 MeV. Errors shown are statistical only.

More…

Elastic neutron scattering at 96 MeV from 12C and Pb-208

Klug, J. ; Blomgren, J. ; Atac, A. ; et al.
Phys.Rev.C 68 (2003) 064605, 2003.
Inspire Record 640465 DOI 10.17182/hepdata.25267

A facility for detection of scattered neutrons in the energy interval 50–130MeV, SCANDAL, has recently been installed at the 20–180MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from C12 and Pb208 has been studied at 96MeV in the 10°–70° interval. The achieved energy resolution, 3.7MeV, is about an order of magnitude better than for any previous experiment above 65MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions based on phenomenology or microscopic nuclear theory.

2 data tables

Measured differential cross section for elastic scattering on PB208. The first DSYS systematic error is from the uncertainty in the contributions from multiple scattering corrections and the second DSYS refers to the cross section uncertainty due to the uncertainty in the angle measurement.

Measured differential cross section for elastic scattering on C12. The first DSYS systematic error is from the uncertainty in the contributions from multiple scattering corrections and the second DSYS refers to the cross section uncertainty due to the uncertainty in the angle measurement.


Complete set of precise deuteron analyzing powers at intermediate energies: Comparison with modern nuclear force predictions

Sekiguchi, K. ; Sakai, H. ; Witaa, H. ; et al.
Phys.Rev.C 65 (2002) 034003, 2002.
Inspire Record 583095 DOI 10.17182/hepdata.25427

Precise measurements of deuteron vector and tensor analyzing powers Ayd, Axx, Ayy, and Axz in d−p elastic scattering were performed via 1H(d→,d)p and 1H(d→,p)d reactions at three incoming deuteron energies of Edlab=140, 200, and 270 MeV. A wide range of center-of-mass angles from ≈10° to 180° was covered. The cross section was measured at 140 and 270 MeV at the same angles. These high precision data were compared with theoretical predictions based on exact solutions of three-nucleon Faddeev equations and modern nucleon-nucleon potentials combined with three-nucleon forces. Three-body interactions representing a wide range of present day models have been used: the Tucson-Melbourne 2π-exchange model, a modification thereof closer to chiral symmetry, the Urbana IX model, and a phenomenological spin-orbit ansatz. Large three-nucleon force effects are predicted, especially at the two higher energies. However, only some of them, predominantly dσ/dΩ and Ayd, are supported by the present data. For tensor analyzing powers the predicted effects are in drastic conflict to the data, indicating defects of the present day three-nucleon force models.

8 data tables

Angular distribution for DEUT P elastic scattering at EKIN of 140 MeV with the SMART spectrograph.

Angular distribution for DEUT P elastic scattering at EKIN of 270 MeV with the D-room polarimeter.

Angular distribution for DEUT P elastic scattering at EKIN of 270 MeV with the SMART spectrograph.

More…

Measurement of the n-p elastic scattering angular distribution at En=10 MeV

Boukharouba, N. ; Bateman, F. B. ; Brient, C. E. ; et al.
Phys.Rev.C 65 (2001) 014004, 2001.
Inspire Record 568789 DOI 10.17182/hepdata.25394

The reported data are given for the mean angles measured rather than for the central angles. The data are normalized to the most recent Evaluated Nuclear Data File evaluated angle-integrated elastic-scattering cross section and refitted with a Legendre polynomial expansion.

1 data table

Measured values of the N-P elastic scattering angular distributions. Data are normalized to the Breit-Hopkins total elastic cross section after radiative capture correction.


A study of Sigma+ p elastic scattering in the region of 300-MeV/c <= p(Sigma) <= 600-MeV/c with a scintillating fiber target.

The KEK-PS E-251 collaboration Ahn, J.K. ; Bassalleck, B. ; Chung, M.S. ; et al.
Nucl.Phys.A 648 (1999) 263-279, 1999.
Inspire Record 453129 DOI 10.17182/hepdata.38435

Σ + p elastic scattering has been studied using a scintillating fiber block (SCIFI) which served as a target for the production of Σ + hyperons as well as for subsequent Σ + scattering on hydrogen. A new technique for the analysis of the hyperon-nucleon scattering in the SCIFI has been developed and established. In this paper, Σ + p elastic scattering events have been identified in the Σ + momentum range of 300–600 MeV/ c , and differential cross sections have been obtained at two angles. The results are compared with various theoretical baryon-baryon interaction models.

1 data table

No description provided.


Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies

Albers, D. ; Bisplinghoff, J. ; Bollmann, R. ; et al.
Phys.Rev.Lett. 78 (1997) 1652-1655, 1997.
Inspire Record 454620 DOI 10.17182/hepdata.19581

Excitation functions of proton-proton elastic scattering cross sections have been measured in narrow steps for projectile momenta pp (energies Tp) from 1100 to 3300MeV/c (500 to 2500 MeV) in the angular range 35°≤Θc.m.≤90° with a detector providing ΔΘc.m.≈1.4° resolution. Measurements have been performed continuously during projectile acceleration in the cooler synchrotron COSY with an internal CH2 fiber target, taking particular care to monitor luminosity as a function of Tp. The advantages of this experimental technique are demonstrated, and the excitation functions obtained are compared to existing cross section data. No evidence for narrow structures was found.

16 data tables

No description provided.

No description provided.

No description provided.

More…