Low-mass vector-meson production at forward rapidity in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 052002, 2014.
Inspire Record 1296835 DOI 10.17182/hepdata.64159

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $\omega$, $\rho$, and $\phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1<p_T<7$ GeV/$c$ and $1.2<|y|<2.2$: $d\sigma/dy(\omega+\rho\rightarrow\mu\mu) = 80 \pm 6 \mbox{(stat)} \pm 12 \mbox{(syst)}$ nb and $d\sigma/dy(\phi\rightarrow\mu\mu) = 27 \pm 3 \mbox{(stat)} \pm 4 \mbox{(syst)}$ nb. These results are compared with midrapidity measurements and calculations.

3 data tables

Differential cross sections of (OMEGA + RHO) and PHI as functions of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.

Differential cross sections of (OMEGA + RHO) and PHI as functions of rapidity. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.

N(PHI) / ( N(OMEGA) + N(RHO) ) as a function of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.


Evidence for the production of thermal-like muon pairs with masses above 1 GeV/$c^2$ in 158A GeV Indium-Indium Collisions

The NA60 collaboration Arnaldi, R ; Banicz, K ; Borer, K ; et al.
Eur.Phys.J.C 59 (2009) 607-623, 2009.
Inspire Record 799832 DOI 10.17182/hepdata.57245

The yield of muon pairs in the invariant mass region 1<M<2.5 GeV/c^2 produced in heavy-ion collisions significantly exceeds the sum of the two expected contributions, Drell-Yan dimuons and muon pairs from the decays of D meson pairs. These sources properly account for the dimuons produced in proton-nucleus collisions. In this paper, we show that dimuons are also produced in excess in 158 A GeV In-In collisions. We furthermore observe, by tagging the dimuon vertices, that this excess is not due to enhanced D meson production, but made of {\em prompt} muon pairs, as expected from a source of thermal dimuons specific to high-energy nucleus-nucleus collisions. The yield of this excess increases significantly from peripheral to central collisions, both with respect to the Drell-Yan yield and to the number of nucleons participating in the collisions. Furthermore, the transverse mass distributions of the excess dimuons are well described by an exponential function, with inverse slope values around 190 MeV. The values are independent of mass and significantly lower than those found at masses below 1 GeV/c^2, rising there up to 250 MeV due to radial flow. This suggests the emission source of thermal dimuons above 1 GeV/c^2 to be of largely partonic origin, when radial flow has not yet built up.

1 data table

Charm production cross section, calculated from the yield of muons pairs coming from D meson decays.


Version 2
J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.Lett. 101 (2008) 122301, 2008.
Inspire Record 776624 DOI 10.17182/hepdata.57327

Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.

27 data tables

J/PSI yield versus transverse momentum PT, at mid rapidity : -0.35<y<0.35, for a centrality range of 0-20%.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/PSI yield versus transverse momentum PT, at mid rapidity : -0.35<y<0.35, for a centrality range of 20-40%.

More…

Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 77 (2008) 024912, 2008.
Inspire Record 768530 DOI 10.17182/hepdata.57373

All of the experimental data points presented in the original paper are correct and unchanged (including statistical and systematic uncertainties). However, herein we correct a comparison between the experimental data and a theoretical picture, because we discovered a mistake in the code used. All of the most probable sigma_breakup values differ by less than 0.4 mb from those originally presented. However, the one standard deviation uncertainties (that include contributions from both the statistical and systematic uncertainties on the experimental data points) are approximately 30-60% larger than originally reported. We give a table of the new comparison results and corrected versions of Figs. 8-11 of the original paper and we note that no correction is needed for results from the data-driven method in Fig. 13.

22 data tables

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 3 bins of rapidity.

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 5 bins of rapidity.

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus PT at backward rapidity (-2.2<y<-1.2) in D+AU collisions.

More…

J / psi production versus transverse momentum and rapidity in p+p collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 232002, 2007.
Inspire Record 731611 DOI 10.17182/hepdata.57311

J/Psi production in p+p collisions at sqrt(s) = 200 GeV has been Measured in the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over a rapidity range of -2.2 < y < 2.2 and a transverse momentum range of 0 < pT < 9 GeV/c. The statistics available allow a detailed measurement of both the pT and rapidity distributions and are sufficient to constrain production models. The total cross section times branching ratio determined for J/Psi production is B_{ll} sigma_pp^J/psi = 178 +/- 3(stat) +/- 53(syst) +/- 18(norm) nb.

6 data tables

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at mid rapidity : -0.35<y<0.35.

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at forward rapidities : absolute value of y belongs to [1.2;2.2].

Mean PT^2 value at mid rapidities : -0.35<y<0.35 The mean PT is obtained with a phenomonological fit of the J/PSI distribution in PT of the form (1/(2*PI*PT))*D(SIG)/DPT = A ( 1+(PT/B)^2)^-6 .The systematic error includes the incertainty from the maximum shape deviation permitted by the point-to-point correlated errors and from allowing the exponent of the fit fonctionto be a free parameter.

More…

J/psi production vs centrality, transverse momentum, and rapidity in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 232301, 2007.
Inspire Record 731670 DOI 10.17182/hepdata.57282

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured J/psi production for rapidities 2.2 < y < 2.2 in Au+Au collisions at sqrt(s_NN) = 200 GeV. The J/psi invariant yield and nuclear modification factor R_AA as a function of centrality, transverse momentum and rapidity are reported. A suppression of J/psi relative to binary collision scaling of proton-proton reaction yields is observed. Models which describe the lower energy J/Psi data at the Super Proton Synchrotron (SPS) invoking only J/psi destruction based on the local medium density would predict a significantly larger suppression at RHIC and more suppression at mid rapidity than at forward rapidity. Both trends are contradicted by our data.

13 data tables

J/PSI invariant yield versus transverse momentum for 0-20%, 20-40%, 40-60%, 60-92% centrality at mid rapidity :,-0.35<y<0.35 An up/down correction, to translate each point at the center of it's relative bin, have been applied to the data.

J/PSI invariant yield versus transverse momentum for 0-20%, 20-40%, 40-60%, 60-92% centrality at forward rapidities : absolute value of y belongs to [1.2;2.2] An up/down correction, to translate each point at the center of it's relative bin, have been applied to the data.

Mean PT^2 values for different bins of centrality, at mid rapidities :-0.35<y<0.35,.

More…

Measurement of single muons at forward rapidity in p + p collisions at s**(1/2) = 200-GeV and implications for charm production.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 76 (2007) 092002, 2007.
Inspire Record 726260 DOI 10.17182/hepdata.63824

Muon production at forward rapidity (1.5 < |\eta| < 1.8) has been measured by the PHENIX experiment over the transverse momentum range 1 < p_T \le 3 GeV/c in sqrt(s) = 200 GeV p+p collisions at the Relativistic Heavy Ion Collider. After statistically subtracting contributions from light hadron decays an excess remains which is attributed to the semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks. The resulting muon spectrum from heavy flavor decays is compared to PYTHIA and a next-to-leading order perturbative QCD calculation. PYTHIA is used to determine the charm quark spectrum that would produce the observed muon excess. The corresponding differential cross section for charm quark production at forward rapidity is determined to be d\sigmac c^bar)/dy|_(y=1.6)=0.243 +/- 0.013 (stat.) +/- 0.105 (data syst.) ^(+0.049(-0.087) (PYTHIA syst.) mb.

1 data table

Differential charm cross section at forward rapidity of 1.6 An additional +0.049 -0.087 systematic uncertainty associated with the PYTHIA normalization is not included in the values given.


Measurement and interpretation of fermion-pair production at LEP energies above the Z resonance.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 45 (2006) 589-632, 2006.
Inspire Record 699726 DOI 10.17182/hepdata.48590

This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.

29 data tables

Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> E+ E- events.

Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 189 GeV.

Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 192 GeV.

More…

Measurement of hadron and lepton-pair production in e+ e- collisions at s**(1/2) = 192-GeV - 208-GeV at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Eur.Phys.J.C 47 (2006) 1-19, 2006.
Inspire Record 704275 DOI 10.17182/hepdata.48637

Hadron production and lepton-pair production in e+e- collisions are studied with data collected with the L3 detector at LEP at centre-of-mass energies sqrt{s}=192-208GeV. Using a total integrated luminosity of 453/pb, 36057 hadronic events and 12863 lepton-pair events are selected. The cross sections for hadron production and lepton-pair production are measured for the full sample and for events where no high-energy initial-state-radiation photon is emitted prior to the collisions. Lepton-pair events are further investigated and forward-backward asymmetries are measured. Finally, the differential cross sections for electron-positron pair-production is determined as a function of the scattering angle. An overall good agreement is found with Standard Model predictions.

21 data tables

Measured hadron cross section for the inclusive data sample.

Measured hadron cross section for the high-energy data sample.

Measured MU+ MU- cross section for the inclusive data sample.

More…

J/psi production and nuclear effects for d + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, Stephen Scott ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 012304, 2006.
Inspire Record 688457 DOI 10.17182/hepdata.57513

J/psi production in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV has been measured by the PHENIX experiment at rapidities -2.2 < y < +2.4. The cross sections and nuclear dependence of J/\psi production versus rapidity, transverse momentum, and centrality are obtained and compared to lower energy p+A results and to theoretical models. The observed nuclear dependence in d+Au collisions is found to be modest, suggesting that the absorption in the final state is weak and the shadowing of the gluon distributions is small and consistent with Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-based parameterizations that fit deep-inelastic scattering and Drell-Yan data at lower energies.

11 data tables

J/PSI differential cross section in P+P reactions( times di-lepton branching ratio B=5.9%) as a function of rapidity.

J/PSI nuclear modification factor RDA,as a function of rapidity.

Total cross-section for J/PSI production in P P reactions. The total cross section is estimated using a pythia calculation, normalized to our data. The di-lepton branching ratio used is 5.9%.The systematic error given is due to the fit. The choice of the PDF and model was estimated to have little impact in the value of the total cross section.

More…