The HEPData database will be migrated to a new host between 08:00 and 09:00 (UTC) on 25th June 2025, leading to a few minutes of downtime.
Showing 10 of 270 results
This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.
Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is $\mathcal{O}(1 \text{GeV})$. This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from $0.3$ GeV to $0.9$ GeV is excluded at 95$\%$ confidence level, with a maximum reach of approximately $170$ GeV in the Higgsino mass.
Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. The study was performed using data from $pp$ collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$. Due to the large $t\bar{t}$ cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data.
Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|p_{out}^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|p_{out}^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $N^{extra jets}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $N^{extra jets}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Total cross-section at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 3.5 < $N^{jets}$ < 4.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 4.5 < $N^{jets}$ < 5.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 5.5 < $N^{jets}$ < 6.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 6.5 < $N^{jets}$ < 7.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 3.5 < $N^{jets}$ < 4.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 4.5 < $N^{jets}$ < 5.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 5.5 < $N^{jets}$ < 6.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 6.5 < $N^{jets}$ < 7.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.0 < $|y^{t,had}|$ < 0.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.7 < $|y^{t,had}|$ < 1.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 1.4 < $|y^{t,had}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.0 < $|y^{t,had}|$ < 0.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.7 < $|y^{t,had}|$ < 1.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 1.4 < $|y^{t,had}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,had}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology.
Relative differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi_{tt}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi_{tt}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.0 < $|y^{t}|$ < 0.75 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.75 < $|y^{t}|$ < 1.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 1.5 < $|y^{t}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.0 < $|y^{t}|$ < 0.75 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.75 < $|y^{t}|$ < 1.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 1.5 < $|y^{t}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Covariance matrix of the Relative differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.0 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.0 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 0.0 < $|y^{t,had}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 1.0 < $|y^{t,had}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 0.0 < $|y^{t,had}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 1.0 < $|y^{t,had}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 0.65 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.65 < $|y^{t\bar{t}}|$ < 1.3 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.3 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 0.65 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.65 < $|y^{t\bar{t}}|$ < 1.3 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.3 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 3.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 3.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 1.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 1.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,had}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $N^{subjets}$ at particle level in the boosted topology.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Total cross-section at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology.
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC during 2015-2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for $pp \to W^\prime \to \ell\nu$ are extracted ($\ell = e$ or $\mu$). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 TeV and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model $W$ boson. Cross-section limits are also provided for resonances with several fixed $\Gamma / m$ values in the range between 1% and 15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.
A search for magnetic monopoles and high-electric-charge objects is presented using 34.4 fb$^{-1}$ of 13 TeV $pp$ collision data collected by the ATLAS detector at the LHC during 2015 and 2016. The considered signature is based upon high ionization in the transition radiation tracker of the inner detector associated with a pencil-shape energy deposit in the electromagnetic calorimeter. The data were collected by a dedicated trigger based on the tracker high-threshold hit capability. The results are interpreted in models of Drell-Yan pair production of stable particles with two spin hypotheses (0 and 1/2) and masses ranging from 200 GeV to 4000 GeV. The search improves by approximately a factor of five the constraints on the direct production of magnetic monopoles carrying one or two Dirac magnetic charges and stable objects with electric charge in the range $20\le|z|\le60$ and extends the charge range to $60<|z|\le100$.
A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV is presented. The data were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=$13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb$^{-1}$. A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times branching ratio for various resonance width hypotheses. The derived limits are shown to be applicable to spin-0, spin-1 and spin-2 signal hypotheses. For a set of benchmark models, the limits are converted into lower limits on the resonance mass and reach 4.5 TeV for the E6-motivated $Z^\prime_\psi$ boson. Also presented are limits on Heavy Vector Triplet model couplings.
Expected upper limits at 95% CL on the fiducial cross-section times branching ratio as a function of pole mass for the zero-width, 0.5%, 1.2%, 3%, 6% and 10% relative width signals for the combined dilepton channel.
Observed upper limits at 95% CL on the fiducial cross-section times branching ratio as a function of pole mass for the zero-width, 0.5%, 1.2%, 3%, 6% and 10% relative width signals for the combined dilepton channel.
Expected upper limits at 95% CL on the fiducial cross-section times branching ratio as a function of pole mass for the zero-width, 0.5%, 1.2%, 3%, 6% and 10% relative width signals for the dielectron channel.
Observed upper limits at 95% CL on the fiducial cross-section times branching ratio as a function of pole mass for the zero-width, 0.5%, 1.2%, 3%, 6% and 10% relative width signals for the dielectron channel.
Expected upper limits at 95% CL on the fiducial cross-section times branching ratio as a function of pole mass for the zero-width, 0.5%, 1.2%, 3%, 6% and 10% relative width signals for the dimuon channel.
Observed upper limits at 95% CL on the fiducial cross-section times branching ratio as a function of pole mass for the zero-width, 0.5%, 1.2%, 3%, 6% and 10% relative width signals for the dimuon channel.
Description of the $m_{\ell\ell}^{\mathrm{true}}$-dependence for the seven relative mass resolution parameters in the dielectron channel.
Description of the $m_{\ell\ell}^{\mathrm{true}}$-dependence for the seven relative mass resolution parameters in the dimuon channel.
This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the bbbb, bbWW, bb$\tau\tau$, WWWW, bb$\gamma \gamma$ and WW$\gamma\gamma$ final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio ($ \kappa_{\lambda} $) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to $ -5.0 < \kappa_{\lambda} <12.0 $ ($ -5.8 < \kappa_{\lambda} <12.0 $). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model.
The problems of neutrino masses, matter-antimatter asymmetry, and dark matter could be successfully addressed by postulating right-handed neutrinos with Majorana masses below the electroweak scale. In this work, leptonic decays of $W$ bosons extracted from 32.9 fb$^{-1}$ to 36.1 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC are used to search for heavy neutral leptons (HNLs) that are produced through mixing with muon or electron neutrinos. The search is conducted using the ATLAS detector in both prompt and displaced leptonic decay signatures. The prompt signature requires three leptons produced at the interaction point (either $\mu\mu e$ or $e e\mu$) with a veto on same-flavour opposite-charge topologies. The displaced signature comprises a prompt muon from the $W$ boson decay and the requirement of a dilepton vertex (either $\mu\mu$ or $\mu e$) displaced in the transverse plane by 4-300 mm from the interaction point. The search sets constraints on the HNL mixing to muon and electron neutrinos for HNL masses in the range 4.5-50 GeV.
Several models of physics beyond the Standard Model predict the existence of dark photons, light neutral particles decaying into collimated leptons or light hadrons. This paper presents a search for long-lived dark photons produced from the decay of a Higgs boson or a heavy scalar boson and decaying into displaced collimated Standard Model fermions. The search uses data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV recorded in 2015-2016 with the ATLAS detector at the Large Hadron Collider. The observed number of events is consistent with the expected background, and limits on the production cross section times branching fraction as a function of the proper decay length of the dark photon are reported. A cross section times branching fraction above 4 pb is excluded for a Higgs boson decaying into two dark photons for dark-photon decay lengths between 1.5 mm and 307 mm.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.