This Letter presents the observation of the rare Z boson decay Z $\to\psi\ell^+\ell^-$. Here, $\psi$ represents contributions from direct J/$\psi$ and $\psi$(2S) $\to$ J/$\psi X$, $\ell^+\ell^-$ is a pair of electrons or muons, and the J/$\psi$ meson is detected via its decay to $\mu^+\mu^-$. The sample of proton-proton collision data, collected by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The signal is observed with a significance in excess of 5 standard deviations. After subtraction of the $\psi$(2S) $\to$ J/$\psi X$ contribution, the ratio of the branching fraction of the exclusive decay Z $\to\psi\ell^+\ell^-$ to the decay Z $\to\mu^+\mu^-\mu^+\mu^-$ within a fiducial phase space is measured to be $\mathcal{B}($Z $\to\psi\ell^+\ell^-) / \mathcal{B}($Z $\to\mu^+\mu^-\mu^+\mu^-) =$ 0.67 $\pm$ 0.18 (stat) $\pm$ 0.05 (syst).
A search for exotic Higgs boson decays to light pseudoscalars in the final state of two muons and two $\tau$ leptons is performed using proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Masses of the pseudoscalar boson between 15.0 and 62.5 GeV are probed, and no significant excess of data is observed above the prediction of the standard model. Upper limits are set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different types of two-Higgs-doublet models extended with a complex scalar singlet.
A search for an exotic decay of the Higgs boson to a pair of light pseudoscalar bosons is performed for the first time in the final state with two b quarks and two $\tau$ leptons. The search is motivated in the context of models of physics beyond the standard model (SM), such as two Higgs doublet models extended with a complex scalar singlet (2HDM+S), which include the next-to-minimal supersymmetric SM (NMSSM). The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV. Masses of the pseudoscalar boson between 15 and 60 GeV are probed, and no excess of events above the SM expectation is observed. Upper limits between 3 and 12% are set on the branching fraction $\mathcal{B}$(h $\to$ aa $\to$ 2$\tau$2b) assuming the SM production of the Higgs boson. Upper limits are also set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different 2HDM+S scenarios. Assuming the SM production cross section for the Higgs boson, the upper limit on this quantity is as low as 20% for a mass of the pseudoscalar of 40 GeV in the NMSSM.
A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented. The data correspond to an integrated luminosity of 36 fb$^{-1}$ collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant $\mathrm{t\bar{t}}$ background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be 89 $\pm$ 4 (stat) $\pm$ 12 (syst) pb, consistent with the standard model.
The first study of W boson production in pPb collisions is presented, for bosons decaying to a muon or electron, and a neutrino. The measurements are based on a data sample corresponding to an integrated luminosity of 34.6 inverse nanobarns at a nucleon-nucleon centre-of-mass energy of sqrt(s[NN]) = 5.02 TeV, collected by the CMS experiment. The W boson differential cross sections, lepton charge asymmetry, and forward-backward asymmetries are measured for leptons of transverse momentum exceeding 25 GeV, and as a function of the lepton pseudorapidity in the abs(eta[lab]) < 2.4 range. Deviations from the expectations based on currently available parton distribution functions are observed, showing the need for including W boson data in nuclear parton distribution global fits.
The first measurement of the cross section for top-quark pair production in pp collisions at the LHC at center-of-mass energy sqrt(s)= 7 TeV has been performed using 3.1 {\pm} 0.3 inverse pb of data recorded by the CMS detector. This result utilizes the final state with two isolated, highly energetic charged leptons, large missing transverse energy, and two or more jets. Backgrounds from Drell-Yan and non-W/Z boson production are estimated from data. Eleven events are observed in the data with 2.1 {\pm} 1.0 events expected from background. The measured cross section is 194 {\pm} 72 (stat.) {\pm} 24 (syst.) {\pm} 21 (lumi.) pb, consistent with next-to-leading order predictions.
Measurements of jet production rates in association with W and Z bosons for jet transverse momenta above 30 GeV are reported, using a sample of proton-proton collision events recorded by CMS at sqrt(s) = 7 TeV, corresponding to an integrated luminosity of 36 inverse picobarns. The study includes the measurement of the normalized inclusive rates of jets sigma(V + >= n jets)/sigma(V), where V represents either a W or a Z. In addition, the ratio of W to Z cross sections and the W charge asymmetry as a function of the number of associated jets are measured. A test of Berends--Giele scaling at sqrt(s) = 7 TeV is also presented. The measurements provide a stringent test of perturbative-QCD calculations and are sensitive to the possible presence of new physics. The results are in agreement with the predictions of a simulation that uses explicit matrix element calculations for final states with jets.
Measurements of differential cross sections are presented for the production of a Z boson and at least one hadronic jet in proton-proton collisions at sqrt(s) = 7 TeV, recorded by the CMS detector, using a data sample corresponding to an integrated luminosity of 4.9 inverse femtobarns. The jet multiplicity distribution is measured for up to six jets. The differential cross sections are measured as a function of jet transverse momentum and pseudorapidity for the four highest transverse momentum jets. The distribution of the scalar sum of jet transverse momenta is also measured as a function of the jet multiplicity. The measurements are compared with theoretical predictions at leading and next-to-leading order in perturbative QCD.
A measurement is presented of the charged hadron multiplicity in hadronic PbPb collisions, as a function of pseudorapidity and centrality, at a collision energy of 2.76 TeV per nucleon pair. The data sample is collected using the CMS detector and a minimum-bias trigger, with the CMS solenoid off. The number of charged hadrons is measured both by counting the number of reconstructed particle hits and by forming hit doublets of pairs of layers in the pixel detector. The two methods give consistent results. The charged hadron multiplicity density dN(ch)/d eta, evaluated at eta=0 for head-on collisions, is found to be 1612 +/- 55, where the uncertainty is dominated by systematic effects. Comparisons of these results to previous measurements and to various models are also presented.
A measurement of the double-differential inclusive dijet production cross section in proton-proton collisions at sqrt(s)=7 TeV is presented as a function of the dijet invariant mass and jet rapidity. The data correspond to an integrated luminosity of 36 inverse picobarns, recorded with the CMS detector at the LHC. The measurement covers the dijet mass range 0.2 TeV to 3.5 TeV and jet rapidities up to |y|=2.5. It is found to be in good agreement with next-to-leading-order QCD predictions.