Date

Search for new phenomena in $pp$ collisions in final states with tau leptons, $b$-jets, and missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 104 (2021) 112005, 2021.
Inspire Record 1907601 DOI 10.17182/hepdata.105998

A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.

89 data tables

Relative systematic uncertainties in the estimated number of background events in the signal regions. In the lower part of the table, a breakdown of the total uncertainty into different categories is given. For the multi-bin SR, the breakdown refers to the integral over all three $p_{\text{T}}(\tau)$ bins. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.

Distributions of $m_{\text{T}2}(\tau_{1},\tau_{2})$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

Distributions of $E_{\text{T}}^{\text{miss}}$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

More…

Version 3
Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 104 (2021) 112010, 2021.
Inspire Record 1906174 DOI 10.17182/hepdata.104458

A search for charginos and neutralinos at the Large Hadron Collider is reported using fully hadronic final states and missing transverse momentum. Pair-produced charginos or neutralinos are explored, each decaying into a high-$p_{\text{T}}$ Standard Model weak boson. Fully-hadronic final states are studied to exploit the advantage of the large branching ratio, and the efficient background rejection by identifying the high-$p_{\text{T}}$ bosons using large-radius jets and jet substructure information. An integrated luminosity of 139 fb$^{-1}$ of proton-proton collision data collected by the ATLAS detector at a center-of-mass energy of 13 TeV is used. No significant excess is found beyond the Standard Model expectation. The 95% confidence level exclusion limits are set on wino or higgsino production with varying assumptions in the decay branching ratios and the type of the lightest supersymmetric particle. A wino (higgsino) mass up to 1060 (900) GeV is excluded when the lightest SUSY particle mass is below 400 (240) GeV and the mass splitting is larger than 400 (450) GeV. The sensitivity to high-mass wino and higgsino is significantly extended compared with the previous LHC searches using the other final states.

145 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Cutflow:</b> <a href="104458?version=3&table=Cut flows for the representative signals">table</a><br/><br/> <b>Boson tagging:</b> <ul> <li><a href="104458?version=3&table=%24W%2FZ%5Crightarrow%20qq%24%20tagging%20efficiency">$W/Z\rightarrow qq$ tagging efficiency</a> <li><a href="104458?version=3&table=%24W%2FZ%5Crightarrow%20qq%24%20tagging%20rejection">$W/Z\rightarrow qq$ tagging rejection</a> <li><a href="104458?version=3&table=%24Z%2Fh%20%5Crightarrow%20bb%24%20tagging%20efficiency">$Z/h\rightarrow bb$ tagging efficiency</a> <li><a href="104458?version=3&table=%24Z%2Fh%20%5Crightarrow%20bb%24%20tagging%20rejection">$Z/h\rightarrow bb$ tagging rejection</a> <li><a href="104458?version=3&table=%24W%5Crightarrow%20qq%24%20tagging%20efficiency%20(vs%20official%20WP)">$W\rightarrow qq$ tagging efficiency (vs official WP)</a> <li><a href="104458?version=3&table=%24W%5Crightarrow%20qq%24%20tagging%20rejection%20(vs%20official%20WP)">$W\rightarrow qq$ tagging rejection (vs official WP)</a> <li><a href="104458?version=3&table=%24Z%5Crightarrow%20qq%24%20tagging%20efficiency%20(vs%20official%20WP)">$Z\rightarrow qq$ tagging efficiency (vs official WP)</a> <li><a href="104458?version=3&table=%24Z%5Crightarrow%20qq%24%20tagging%20rejection%20(vs%20official%20WP)">$Z\rightarrow qq$ tagging rejection (vs official WP)</a> </ul> <b>Systematic uncertainty:</b> <a href="104458?version=3&table=Total%20systematic%20uncertainties">table</a><br/><br/> <b>Summary of SR yields:</b> <a href="104458?version=3&table=Data%20yields%20and%20background%20expectation%20in%20the%20SRs">table</a><br/><br/> <b>Expected background yields and the breakdown:</b> <ul> <li><a href="104458?version=3&table=Data%20yields%20and%20background%20breakdown%20in%20SR">CR0L / SR</a> <li><a href="104458?version=3&table=Data%20yields%20and%20background%20breakdown%20in%20CR%2FVR%201L(1Y)">CR1L / VR1L /CR1Y / VR1Y</a> </ul> <b>SR distributions:</b> <ul> <li><a href="104458?version=3&table=Effective mass distribution in SR-4Q-VV">SR-4Q-VV: Effective mass</a> <li><a href="104458?version=3&table=Leading large-$R$ jet mass distribution in SR-4Q-VV">SR-4Q-VV: Leading jet mass</a> <li><a href="104458?version=3&table=Leading large-$R$ jet $D_{2}$ distribution in SR-4Q-VV">SR-4Q-VV: Leading jet $D_{2}$</a> <li><a href="104458?version=3&table=Sub-leading large-$R$ jet mass distribution in SR-4Q-VV">SR-4Q-VV: Sub-leading jet mass</a> <li><a href="104458?version=3&table=Sub-leading large-$R$ jet $D_{2}$ distribution in SR-4Q-VV">SR-4Q-VV: Sub-leading jet $D_{2}$</a> <li><a href="104458?version=3&table=$m_{T2}$ distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: $m_{\textrm{T2}}$</a> <li><a href="104458?version=3&table=bb-tagged jet mass distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: bb-tagged jet mass</a> <li><a href="104458?version=3&table=Effective mass distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: Effective mass</a> <li><a href="104458?version=3&table=$m_{T2}$ distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: $m_{\textrm{T2}}$</a> <li><a href="104458?version=3&table=bb-tagged jet mass distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: bb-tagged jet mass</a> <li><a href="104458?version=3&table=Effective mass distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: Effective mass</a> </ul> <b>Exclusion limit:</b> <ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) simplified model (C1C1-WW)">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (W~, B~) simplified model (C1C1-WW)">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) simplified model (C1N2-WZ)">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) simplified model (C1N2-WZ)">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) simplified model (C1N2-Wh)">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) simplified model (C1N2-Wh)">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=0\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 0%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 0%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=25\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 25%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 25%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=50\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 50%">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 50%">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=75\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 75%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 75%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=100\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, B~) B(N2->ZN1) = 100%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (W~, B~) B(N2->ZN1) = 100%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=50\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, B~) B(N2->ZN1) = 50%">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (H~, B~) B(N2->ZN1) = 50%">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{H})$ model ($\textrm{tan}\beta=10,~\mu>0$): <ul> <li><a href="104458?version=3&table=Exp limit on (W~, H~), tanb = 10, mu>0">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, H~), tanb = 10, mu>0">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model ($\textrm{tan}\beta=10,~\mu>0$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, W~), tanb = 10, mu>0">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (H~, W~), tanb = 10, mu>0">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{H})$ model ($\textrm{tan}\beta=10$) on ($\mu$,$M_{2}$) plane: <ul> <li><a href="104458?version=3&table=Exp limit on (W~, H~), tanb = 10, M2 vs mu">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (W~, H~), tanb = 10, M2 vs mu">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model ($\textrm{tan}\beta=10$) on ($\mu$,$M_{2}$) plane: <ul> <li><a href="104458?version=3&table=Exp limit on (H~, W~), tanb = 10, M2 vs mu">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (H~, W~), tanb = 10, M2 vs mu">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{G})$ model: <ul> <li><a href="104458?version=3&table=Exp limit on (H~, G~)">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20G~)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(H~%2C%20G~)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (H~, G~)">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20G~)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20G~)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=100\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, a~) B(N1->Za~) = 100%">Expected limit</a> <li><a href="104458?version=3&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Exp%20limit%20(-1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=3&table=Obs limit on (H~, a~) B(N1->Za~) = 100%">Observed limit</a> <li><a href="104458?version=3&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=3&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=75\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, a~) B(N1->Za~) = 75%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (H~, a~) B(N1->Za~) = 75%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=50\%$): <ul> <li><a href="104458?version=3&table=Exp limit on (H~, a~) B(N1->Za~) = 50%">Expected limit</a> <li><a href="104458?version=3&table=Obs limit on (H~, a~) B(N1->Za~) = 50%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=25\%$): <ul> <li>Expected limit : (No mass point could be excluded) <li><a href="104458?version=3&table=Obs limit on (H~, a~) B(N1->Za~) = 25%">Observed limit</a> </ul> </ul> <b>EWKino branching ratios:</b> <ul> <li>$(\tilde{W},~\tilde{H})$ model: <ul> <li><a href="104458?version=3&table=B(C2-%3EW%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow W\tilde{\chi}_{1,2}^{0})$</a> <li><a href="104458?version=3&table=B(C2-%3EZ%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow Z\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(C2-%3Eh%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow h\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N3-%3EW%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N3-%3EZ%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow Z\tilde{\chi}_{1,2}^{0})$</a> <li><a href="104458?version=3&table=B(N3-%3Eh%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow h\tilde{\chi}_{1,2}^{0})$</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model: <ul> <li><a href="104458?version=3&table=B(C2-%3EW%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow W\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=3&table=B(C2-%3EZ%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow Z\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(C2-%3Eh%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow h\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N2-%3EW%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N2-%3EZ%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=3&table=B(N2-%3Eh%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow h\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=3&table=B(N3-%3EW%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=3&table=B(N3-%3EZ%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=3&table=B(N3-%3Eh%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow h\tilde{\chi}_{1}^{0})$</a> </ul> </ul> <b>Cross-section upper limit:</b> <ul> <li>Expected: <ul> <li><a href="104458?version=3&table=Expected cross-section upper limit on C1C1-WW">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW)</a> <li><a href="104458?version=3&table=Expected cross-section upper limit on C1N2-WZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ)</a> <li><a href="104458?version=3&table=Expected cross-section upper limit on C1N2-Wh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh)</a> <li><a href="104458?version=3&table=Expected cross-section upper limit on (H~, G~)">$(\tilde{H},~\tilde{G})$ model</a> </ul> <li>Observed: <ul> <li><a href="104458?version=3&table=Observed cross-section upper limit on C1C1-WW">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW)</a> <li><a href="104458?version=3&table=Observed cross-section upper limit on C1N2-WZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ)</a> <li><a href="104458?version=3&table=Observed cross-section upper limit on C1N2-Wh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh)</a> <li><a href="104458?version=3&table=Observed cross-section upper limit on (H~, G~)">$(\tilde{H},~\tilde{G})$ model</a> </ul> </ul> <b>Acceptance:</b> <ul> <li><a href="104458?version=3&table=Acceptance of C1C1-WW signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Acceptance of C1N2-WZ signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Acceptance of C1N2-WZ signals by SR-2B2Q-VZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Acceptance of C1N2-Wh signals by SR-2B2Q-Vh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Acceptance of N2N3-ZZ signals by SR-4Q-VV">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Acceptance of N2N3-ZZ signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Acceptance of N2N3-Zh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-Zh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Acceptance of N2N3-hh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-hh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Acceptance of (H~, G~) signals by SR-4Q-VV">$(\tilde{H},~\tilde{G})$ model in SR-4Q-VV</a> <li><a href="104458?version=3&table=Acceptance of (H~, G~) signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Acceptance of (H~, G~) signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-Vh</a> </ul> <b>Efficiency:</b> <ul> <li><a href="104458?version=3&table=Efficiency of C1C1-WW signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Efficiency of C1N2-WZ signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Efficiency of C1N2-WZ signals by SR-2B2Q-VZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Efficiency of C1N2-Wh signals by SR-2B2Q-Vh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Efficiency of N2N3-ZZ signals by SR-4Q-VV">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-4Q-VV</a> <li><a href="104458?version=3&table=Efficiency of N2N3-ZZ signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Efficiency of N2N3-Zh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-Zh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Efficiency of N2N3-hh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-hh) in SR-2B2Q-Vh</a> <li><a href="104458?version=3&table=Efficiency of (H~, G~) signals by SR-4Q-VV">$(\tilde{H},~\tilde{G})$ model in SR-4Q-VV</a> <li><a href="104458?version=3&table=Efficiency of (H~, G~) signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-VZ</a> <li><a href="104458?version=3&table=Efficiency of (H~, G~) signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-Vh</a> </ul>

Cut flows of some representative signals up to SR-4Q-VV, SR-2B2Q-VZ, and SR-2B2Q-Vh. One signal point from the $(\tilde{W},~\tilde{B})$ simplified models (C1C1-WW, C1N2-WZ, and C1N2-Wh) and $(\tilde{H},~\tilde{G})$ is chosen. The "preliminary event reduction" is a technical selection applied for reducing the sample size, which is fully efficient after the $n_{\textrm{Large}-R~\textrm{jets}}\geq 2$ selection.

The boson-tagging efficiency for jets arising from $W/Z$ bosons decaying into $q\bar{q}$ (signal jets) are shown. The signal jet efficiency of $W_{qq}$/$Z_{qq}$-tagging is evaluated using a sample of pre-selected large-$R$ jets ($p_{\textrm{T}}>200~\textrm{GeV}, |\eta|<2.0, m_{J} > 40~\textrm{GeV}$) in the simulated $(\tilde{W},\tilde{B})$ simplified model signal events with $\Delta m (\tilde{\chi}_{\textrm{heavy}},~\tilde{\chi}_{\textrm{light}}) \ge 400~\textrm{GeV}$. The jets are matched with generator-level $W/Z$-bosons by $\Delta R<1.0$ which decay into $q\bar{q}$. The efficiency correction factors are applied on the signal efficiency rejection for the $W_{qq}$/$Z_{qq}$-tagging. The systematic uncertainty is represented by the hashed bands.

More…

Measurement of differential $\text{t}\overline{\text{t}}$ production cross sections in the full kinematic range using lepton+jets events from proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 104 (2021) 092013, 2021.
Inspire Record 1901295 DOI 10.17182/hepdata.102956

Measurements of differential and double-differential cross sections of top quark pair ($\text{t}\overline{\text{t}}$) production are presented in the lepton+jets channels with a single electron or muon and jets in the final state. The analysis combines for the first time signatures of top quarks with low transverse momentum $p_\text{T}$, where the top quark decay products can be identified as separated jets and isolated leptons, and with high $p_\text{T}$, where the decay products are collimated and overlap. The measurements are based on proton-proton collision data at $\sqrt{s} = $ 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross sections are presented at the parton and particle levels, where the latter minimizes extrapolations based on theoretical assumptions. Most of the measured differential cross sections are well described by standard model predictions with the exception of some double-differential distributions. The inclusive $\text{t}\overline{\text{t}}$ production cross section is measured to be $\sigma_{\text{t}\overline{\text{t}}} = $ 791 $\pm$ 25 pb, which constitutes the most precise measurement in the lepton+jets channel to date.

362 data tables

differential cross sections.

differential cross sections.

differential cross sections.

More…

Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at $\sqrt{s} = $ 13 TeV

The CMS collaboration Lee, Kyeongpil ; Jain, Sandhya ; Wang, Jin ; et al.
JHEP 12 (2021) 083, 2021.
Inspire Record 1895530 DOI 10.17182/hepdata.105880

A search for new top quark interactions is performed within the framework of an effective field theory using the associated production of either one or two top quarks with a Z boson in multilepton final states. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS experiment at the LHC. Five dimension-six operators modifying the electroweak interactions of the top quark are considered. Novel machine-learning techniques are used to enhance the sensitivity to effects arising from these operators. Distributions used for the signal extraction are parameterized in terms of Wilson coefficients describing the interaction strengths of the operators. All five Wilson coefficients are simultaneously fit to data and 95% confidence level intervals are computed. All results are consistent with the SM expectations.

4 data tables

Expected and observed 95% CL confidence intervals for all Wilson coefficients. The intervals are obtained by scanning over a single Wilson coefficient, while fixing the other Wilson coefficients to their SM values of zero.

Expected and observed 95% CL confidence intervals for all Wilson coefficients. The intervals for all five Wilson coefficients are obtained from a single fit, in which all Wilson coefficients are treated as free parameters.

Covariance between the Wilson coefficients (in units of TeV$^{-4}$), after the 5D fit to data.

More…

Version 2
Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 11 (2021) 153, 2021.
Inspire Record 1894408 DOI 10.17182/hepdata.106115

A search is presented for new particles produced at the LHC in proton-proton collisions at $\sqrt{s} =$ 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb$^{-1}$, collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb$^{-1}$, collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.

55 data tables

Differential signal yields for various signal hypotheses.

Differential signal yields for various signal hypotheses.

Differential signal yields for various signal hypotheses.

More…

Search for chargino-neutralino production in events with Higgs and W bosons using 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 10 (2021) 045, 2021.
Inspire Record 1895525 DOI 10.17182/hepdata.127863

A search for electroweak production of supersymmetric (SUSY) particles in final states with one lepton, a Higgs boson decaying to a pair of bottom quarks, and large missing transverse momentum is presented. The search uses data from proton-proton collisions at a center-of-mass energy of 13 TeV collected using the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The observed yields are consistent with backgrounds expected from the standard model. The results are interpreted in the context of a simplified SUSY model of chargino-neutralino production, with the chargino decaying to a W boson and the lightest SUSY particle (LSP) and the neutralino decaying to a Higgs boson and the LSP. Charginos and neutralinos with masses up to 820 GeV are excluded at 95% confidence level when the LSP mass is small, and LSPs with mass up to 350 GeV are excluded when the masses of the chargino and neutralino are approximately 700 GeV.

23 data tables

No description provided.

No description provided.

More…

Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of $\tau$ leptons in pp collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 128 (2022) 081805, 2022.
Inspire Record 1894790 DOI 10.17182/hepdata.105961

Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the $\tau$ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event if any. The analysis is performed using proton-proton data collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. These are the first differential measurements of the Higgs boson cross section in the final state of two $\tau$ leptons, and they constitute a significant improvement over measurements in other final states in events with a large jet multiplicity or with a Lorentz-boosted Higgs boson.

7 data tables

The fiducial differential signal strength and cross section in each Higgs pT bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The fiducial differential signal strength and cross section in each jet multiplicity bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The fiducial differential signal strength and cross section in each leading jet pT bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

More…

Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 81 (2021) 970, 2021.
Inspire Record 1893826 DOI 10.17182/hepdata.116374

A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$ collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on the model, the combined result excludes a top squark mass up to 1325 GeV for a massless neutralino, and a neutralino mass up to 700 GeV for a top squark mass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV.

35 data tables

Leading lepton ${p}_{T}$ distribution of data and MC events in the signal region with the signal stacked on top of the background prediction for a mass hypothesis of ${m}_{stop} = 225GeV$ and ${m}_{LSP} = 50 GeV$. Events from ttW, ttZ, DY, non-prompt leptons, and diboson processes are grouped into the 'Other' category. The lower panel contains the data-to-prediction ratio. The uncertainty band includes statistical, background normalization and all systematic uncertainties.

${m}_{T2}$ distribution of data and MC events in the signal region with the signal stacked on top of the background prediction for a mass hypothesis of ${m}_{stop} = 225GeV$ and ${m}_{LSP} = 50 GeV$. Events from ttW, ttZ, DY, non-prompt leptons, and diboson processes are grouped into the 'Other' category. The lower panel contains the data-to-prediction ratio. The uncertainty band includes statistical, background normalization and all systematic uncertainties.

${H}_{T}$ distribution of data and MC events in the signal region with the signal stacked on top of the background prediction for a mass hypothesis of ${m}_{stop} = 225GeV$ and ${m}_{LSP} = 50 GeV$. Events from ttW, ttZ, DY, non-prompt leptons, and diboson processes are grouped into the 'Other' category. The lower panel contains the data-to-prediction ratio. The uncertainty band includes statistical, background normalization and all systematic uncertainties.

More…

Measurement of the production cross section of pairs of isolated photons in $pp$ collisions at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 169, 2021.
Inspire Record 1887997 DOI 10.17182/hepdata.104925

A measurement of prompt photon-pair production in proton-proton collisions at $\sqrt{s}=13$ TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb$^{-1}$. Events with two photons in the well-instrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of $p_\mathrm{T,\gamma_{1(2)}} > 40(30)$ GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leading-order calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system.

9 data tables

Differential cross section as a function of $p_{T,\gamma_{1}}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.

Differential cross section as a function of $p_{T,\gamma_{2}}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.

Integrated fiducial cross section measured in data and from different predictions.

More…

Search for exotic decays of the Higgs boson into long-lived particles in $pp$ collisions at $\sqrt{s} = 13$ TeV using displaced vertices in the ATLAS inner detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 229, 2021.
Inspire Record 1882568 DOI 10.17182/hepdata.106655

A novel search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the LHC. Events consistent with the production of a Higgs boson in association with a leptonically decaying $Z$ boson are analysed. Long-lived particle (LLP) decays are reconstructed from inner-detector tracks as displaced vertices with high mass and track multiplicity relative to Standard Model processes. The analysis selection requires the presence of at least two displaced vertices, effectively suppressing Standard Model backgrounds. The residual background contribution is estimated using a data-driven technique. No excess over Standard Model predictions is observed, and upper limits are set on the branching ratio of the Higgs boson to LLPs. Branching ratios above 10% are excluded at 95% confidence level for LLP mean proper lifetimes $c\tau$ as small as 4 mm and as large as 100 mm. For LLP masses below 40 GeV, these results represent the most stringent constraint in this lifetime regime.

7 data tables

95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 16$ GeV.

95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 25$ GeV.

95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 35$ GeV.

More…