Showing 10 of 356 results
A search is presented for new phenomena in events characterised by high jet multiplicity, no leptons (electrons or muons), and four or more jets originating from the fragmentation of $b$-quarks ($b$-jets). The search uses 139 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider during Run 2. The dominant Standard Model background originates from multijet production and is estimated using a data-driven technique based on an extrapolation from events with low $b$-jet multiplicity to the high $b$-jet multiplicities used in the search. No significant excess over the Standard Model expectation is observed and 95% confidence-level limits that constrain simplified models of R-parity-violating supersymmetry are determined. The exclusion limits reach 950 GeV in top-squark mass in the models considered.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stbchionly_obs">Stop to bottom quark and chargino exclusion contour (Obs.)</a> <li><a href="?table=stbchionly_exp">Stop to bottom quark and chargino exclusion contour (Exp.)</a> <li><a href="?table=stbchi_obs">Stop to higgsino LSP exclusion contour (Obs.)</a> <li><a href="?table=stbchi_exp">Stop to higgsino LSP exclusion contour (Exp.)</a> <li><a href="?table=sttN_obs">Stop to top quark and neutralino exclusion contour (Obs.)</a> <li><a href="?table=sttN_exp">Stop to top quark and neutralino exclusion contour (Exp.)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stbchionly_xSecUL_obs">Obs Xsection upper limit in stop to bottom quark and chargino</a> <li><a href="?table=stop_xSecUL_obs">Obs Xsection upper limit in higgsino LSP</a> <li><a href="?table=stbchionly_xSecUL_exp">Exp Xsection upper limit in stop to bottom quark and chargino</a> <li><a href="?table=stop_xSecUL_exp">Exp Xsection upper limit in higgsino LSP</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR_yields">SR_yields</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow">cutflow</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>stbchi_6je4be:</b> <a href="?table=stbchi_Acc_6je4be">stbchi_Acc_6je4be</a> <a href="?table=stbchi_Eff_6je4be">stbchi_Eff_6je4be</a> <li> <b>stbchi_7je4be:</b> <a href="?table=stbchi_Acc_7je4be">stbchi_Acc_7je4be</a> <a href="?table=stbchi_Eff_7je4be">stbchi_Eff_7je4be</a> <li> <b>stbchi_8je4be:</b> <a href="?table=stbchi_Acc_8je4be">stbchi_Acc_8je4be</a> <a href="?table=stbchi_Eff_8je4be">stbchi_Eff_8je4be</a> <li> <b>stbchi_9ji4be:</b> <a href="?table=stbchi_Acc_9ji4be">stbchi_Acc_9ji4be</a> <a href="?table=stbchi_Eff_9ji4be">stbchi_Eff_9ji4be</a> <li> <b>stbchi_6je5bi:</b> <a href="?table=stbchi_Acc_6je5bi">stbchi_Acc_6je5bi</a> <a href="?table=stbchi_Eff_6je5bi">stbchi_Eff_6je5bi</a> <li> <b>stbchi_7je5bi:</b> <a href="?table=stbchi_Acc_7je5bi">stbchi_Acc_7je5bi</a> <a href="?table=stbchi_Eff_7je5bi">stbchi_Eff_7je5bi</a> <li> <b>stbchi_8je5bi:</b> <a href="?table=stbchi_Acc_8je5bi">stbchi_Acc_8je5bi</a> <a href="?table=stbchi_Eff_8je5bi">stbchi_Eff_8je5bi</a> <li> <b>stbchi_9ji5bi:</b> <a href="?table=stbchi_Acc_9ji5bi">stbchi_Acc_9ji5bi</a> <a href="?table=stbchi_Eff_9ji5bi">stbchi_Eff_9ji5bi</a> <li> <b>stbchi_8ji5bi:</b> <a href="?table=stbchi_Acc_8ji5bi">stbchi_Acc_8ji5bi</a> <a href="?table=stbchi_Eff_8ji5bi">stbchi_Eff_8ji5bi</a> <li> <b>sttN_6je4be:</b> <a href="?table=sttN_Acc_6je4be">sttN_Acc_6je4be</a> <a href="?table=sttN_Eff_6je4be">sttN_Eff_6je4be</a> <li> <b>sttN_7je4be:</b> <a href="?table=sttN_Acc_7je4be">sttN_Acc_7je4be</a> <a href="?table=sttN_Eff_7je4be">sttN_Eff_7je4be</a> <li> <b>sttN_8je4be:</b> <a href="?table=sttN_Acc_8je4be">sttN_Acc_8je4be</a> <a href="?table=sttN_Eff_8je4be">sttN_Eff_8je4be</a> <li> <b>sttN_9ji4be:</b> <a href="?table=sttN_Acc_9ji4be">sttN_Acc_9ji4be</a> <a href="?table=sttN_Eff_9ji4be">sttN_Eff_9ji4be</a> <li> <b>sttN_6je5bi:</b> <a href="?table=sttN_Acc_6je5bi">sttN_Acc_6je5bi</a> <a href="?table=sttN_Eff_6je5bi">sttN_Eff_6je5bi</a> <li> <b>sttN_7je5bi:</b> <a href="?table=sttN_Acc_7je5bi">sttN_Acc_7je5bi</a> <a href="?table=sttN_Eff_7je5bi">sttN_Eff_7je5bi</a> <li> <b>sttN_8je5bi:</b> <a href="?table=sttN_Acc_8je5bi">sttN_Acc_8je5bi</a> <a href="?table=sttN_Eff_8je5bi">sttN_Eff_8je5bi</a> <li> <b>sttN_9ji5bi:</b> <a href="?table=sttN_Acc_9ji5bi">sttN_Acc_9ji5bi</a> <a href="?table=sttN_Eff_9ji5bi">sttN_Eff_9ji5bi</a> <li> <b>sttN_8ji5bi:</b> <a href="?table=sttN_Acc_8ji5bi">sttN_Acc_8ji5bi</a> <a href="?table=sttN_Eff_8ji5bi">sttN_Eff_8ji5bi</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)
The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{\pm}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{\pm}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contour are excluded. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.
The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown in the case of a higgsino LSP. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown in the case of a higgsino LSP. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively.
The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown for the region $m_{\tilde{t}} - m_{\tilde{\chi}^0_{1,2}, \tilde{\chi}^\pm_{1}} \geq m_\text{top}$ where $B(\tilde{t} \rightarrow b \chi^{+}_{1}) = B(\tilde{t} \rightarrow t \chi^{0}_{1,2}) = 0.5$.
The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown for the region $m_{\tilde{t}} - m_{\tilde{\chi}^0_{1,2}, \tilde{\chi}^\pm_{1}} \geq m_\text{top}$ where $B(\tilde{t} \rightarrow b \chi^{+}_{1}) = B(\tilde{t} \rightarrow t \chi^{0}_{1,2}) = 0.5$.
Observed model-dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{\pm}_{1})$ signal grid. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.
Observed model-dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{\pm}_{1} / \tilde{\chi}^{0}_{1,2})$ signal grid. Limits are shown in the case of a higgsino LSP. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively.
Expected model-dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{\pm}_{1})$ signal grid. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.
Expected model-dependent upper limit on the cross section for the $(\tilde{t},\tilde{\chi}^{\pm}_{1} / \tilde{\chi}^{0}_{1,2})$ signal grid. Limits are shown in the case of a higgsino LSP. The results are constrained by the kinematic limits of the top-squark decay into a chargino and a bottom quark (upper diagonal line) and into a neutralino and a top quark (lower diagonal line), respectively.
Expected background and observed number of events in different jet and $b$-tag multiplicity bins.
Cut flow for a model of top-squark pair production with the top squark decaying to a $b$-quark and a chargino. The chargino decays through the non-zero RPV coupling $\lambda^{''}_{323}$ via a virtual top squark to $bbs$ quark triplets ($m_{\tilde{t}}$ = 800 GeV, $m_{\tilde{\chi}^{\pm}_{1}}$ = 750 GeV). The multijet trigger consists of four jets satisfying $p_{\text{T}}\geq(100)120$ GeV for the 2015-2016 (2017-2018) data period. Selections with negligible inefficiencies on the given sample, such as data quality requirements, are not displayed. The numbers in $N_{\text{weighted}}$ are normalized by the integrated luminosity of 139 fb$^{-1}$.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal efficiency for $\tilde{t} \rightarrow b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the efficiency given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
Signal acceptance for $\tilde{t} \rightarrow t\tilde{\chi}^{0}_{1,2}(\tilde{\chi}^{0}_{1,2} \rightarrow tbs) / b\tilde{\chi}^{+}_{1}(\tilde{\chi}^{+}_{1} \rightarrow \bar{b}\bar{b}\bar{s}) $ and c.c. model. Please mind that the acceptance given in the table is reported in %.
This paper presents measurements of charged-particle distributions sensitive to the properties of the underlying event in events containing a $Z$ boson decaying into a muon pair. The data were obtained using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 13 TeV with an integrated luminosity of 3.2 fb$^{-1}$. Distributions of the charged-particle multiplicity and of the charged-particle transverse momentum are measured in regions of the azimuth defined relative to the $Z$ boson direction. The measured distributions are compared with the predictions of various Monte Carlo generators which implement different underlying-event models. The Monte Carlo model predictions qualitatively describe the data well, but with some significant discrepancies.
Figure 09d, mean sumPt toward, toward region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transverse region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 09c, mean sumPt transmin, transmin region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transmax region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
away region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 09b, mean nTracks toward, toward region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transverse region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 09a, mean nTracks transmin, transmin region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transmax region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
away region: Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 10b, mean meanPt toward, toward region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transverse region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 10a, mean meanPt transmin, transmin region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transmax region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
away region : Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 04c from auxiliary figures, mean sumPt toward low thrust, toward region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transverse region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 11c, mean sumPt transmin low thrust, transmin region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transmax region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
away region : low thrust ($T<0.75$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 04a from auxiliary figures, mean nTracks toward low thrust, toward region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transverse region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 11a, mean nTracks transmin low thrust, transmin region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transmax region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
away region : low thrust ($T<0.75$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 06a from auxiliary figures, mean meanPt toward low thrust, toward region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transverse region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 12a, mean meanPt transmin low thrust, transmin region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transmax region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
away region : low thrust ($T<0.75$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 04d from auxiliary figures, mean sumPt toward high thrust, toward region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transverse region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 11d, mean sumPt transmin high thrust, transmin region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
transmax region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
away region : hight thrust ($0.75\leq T$) Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)
Figure 04b from auxiliary figures, mean nTracks toward high thrust, toward region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transverse region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 11b, mean nTracks transmin high thrust, transmin region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
transmax region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
away region : hight thrust ($0.75\leq T$) Mean charged particle multiplicity ($\langle N_{ch} \rangle \pm stat. \pm syst.det. \pm syst.gen.$)
Figure 06b from auxiliary figures, mean meanPt toward high thrust, toward region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transverse region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
Figure 12b, mean meanPt transmin high thrust, transmin region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
transmax region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
away region : hight thrust ($0.75\leq T$) Mean of arithmetic mean of transverse momenta ($\langle mean p_{T} \rangle \pm stat. \pm syst.det.\pm syst.gen.[GeV]$)
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01a from auxiliary figures, ptSpec toward_zptregion2, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02a from auxiliary figures, ptSpec toward_zptregion7, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04a, ptSpec transmin_zptregion2, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05a, ptSpec transmin_zptregion7, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01b from auxiliary figures, nTracks toward_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02b from auxiliary figures, nTracks toward_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04b, nTracks transmin_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05b, nTracks transmin_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01c from auxiliary figures, sumPt toward_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02c from auxiliary figures, sumPt toward_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04c, sumPt transmin_zptregion2, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05c, sumPt transmin_zptregion7, $\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 01d from auxiliary figures, meanPt toward_zptregion2, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 02d from auxiliary figures, meanPt toward_zptregion7, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 04d, meanPt transmin_zptregion2, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 05d, meanPt transmin_zptregion7, $\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 03a from auxiliary figures, ptSpec toward_zptregion2 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 03c from auxiliary figures, ptSpec toward_zptregion7 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 06a, ptSpec transmin_zptregion2 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 06c, ptSpec transmin_zptregion7 low thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{t}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 05a from auxiliary figures, nTracks toward_zptregion2 low thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 07a, nTracks transmin_zptregion2 low thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,low thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,low thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{N_{ev}}{d(mean p_{t})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust(T<0.75),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 03b from auxiliary figures, ptSpec toward_zptregion2 high thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$80GeV<p_{T}^{Z}<120GeV$
Figure 03d from auxiliary figures, ptSpec toward_zptregion7 high thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 06b, ptSpec transmin_zptregion2 high thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$80GeV<p_{T}^{Z}<120GeV$
Figure 06d, ptSpec transmin_zptregion7 high thrust, $\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ch}} \frac{dN_{ch}}{dp_{T}}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$0GeV<p_{T}^{Z}<10GeV$
Figure 05b from auxiliary figures, nTracks toward_zptregion2 high thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$0GeV<p_{T}^{Z}<10GeV$
Figure 07b, nTracks transmin_zptregion2 high thrust, $\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.$,high thrust (0.75<=T$),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d\Sigma p_{t}/\delta\eta\delta\phi}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75=<T),away region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),toward region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transverse region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmin region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),transmax region,$200GeV<p_{T}^{Z}<500GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$0GeV<p_{T}^{Z}<10GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$10GeV<p_{T}^{Z}<20GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$20GeV<p_{T}^{Z}<40GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$40GeV<p_{T}^{Z}<60GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$60GeV<p_{T}^{Z}<80GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$80GeV<p_{T}^{Z}<120GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$120GeV<p_{T}^{Z}<200GeV$
$\frac{1}{N_{ev}} \frac{dN_{ev}}{d(mean p_{T})}\pm stat.\pm syst.gen.\pm syst.det.[GeV^{-1}]$,high thrust (0.75<=T),away region,$200GeV<p_{T}^{Z}<500GeV$
A search for pair production of scalar leptoquarks, each decaying into either an electron or a muon and a top quark, is presented. This is the first leptoquark search using ATLAS data to investigate top-philic cross-generational couplings that could provide explanations for recently observed anomalies in $B$ meson decays. This analysis targets high leptoquark masses which cause the decay products of each resultant top quark to be contained within a single high-$p_{\mathrm{T}}$ large-radius jet. The full Run 2 dataset is exploited, consisting of 139 fb$^{-1}$ of data collected from proton-proton collisions at $\sqrt{s}=13$ TeV from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. In the absence of any significant deviation from the background expectation, lower limits on the leptoquark masses are set at 1480 GeV and 1470 GeV for the electron and muon channel, respectively.
Expected and observed upper limits at the 95% CL on the leptoquark pair production cross section as a function of leptoquark mass under the assumption of $\mathcal{B}$(LQ->$te$)=1.
Expected and observed upper limits at the 95% CL on the leptoquark pair production cross section as a function of leptoquark mass under the assumption of $\mathcal{B}$(LQ->$t\mu$)=1.
Expected and observed 95% CL lower limits on the leptoquark mass as a function of the branching ratio $\mathcal{B}$(LQ->$te$).
Expected and observed 95% CL lower limits on the leptoquark mass as a function of the branching ratio $\mathcal{B}$(LQ->$t\mu$).
This Letter presents direct searches for lepton flavour violation in Higgs boson decays, $H\rightarrow e\tau$ and $H\rightarrow\mu\tau$, performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of $36.1\,\mathrm{fb}^{-1}$. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95 % confidence-level upper limits on the lepton-flavour-violating branching ratios are $0.47\%$ ($0.34^{+0.13}_{-0.10}\,\%$) and $0.28\%$ ($0.37^{+0.14}_{-0.10}\,\%$) for $H\to e\tau$ and $H\to\mu\tau$, respectively.
95% CL upper limits on the branching ratio H --> e tau.
95% CL upper limits on the branching ratio H --> mu tau.
A search for new-physics resonances decaying into a lepton and a jet performed by the ATLAS experiment is presented. Scalar leptoquarks pair-produced in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider are considered using an integrated luminosity of 139 fb$^{-1}$, corresponding to the full Run 2 dataset. They are searched for in events with two electrons or two muons and two or more jets, including jets identified as arising from the fragmentation of $c$- or $b$-quarks. The observed yield in each channel is consistent with the Standard Model background expectation. Leptoquarks with masses below 1.8 TeV and 1.7 TeV are excluded in the electron and muon channels, respectively, assuming a branching ratio into a charged lepton and a quark of 100%, with minimal dependence on the quark flavour. Upper limits on the aforementioned branching ratio are also given as a function of the leptoquark mass.
Distribution of the resonance mass in the pretag Signal Region of the $ qe$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the pretag Signal Region of the $ q\mu$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the untagged Signal Region of the $ ce$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the c-tag Signal Region of the $ ce$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the b-tag Signal Region of the $ ce$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the untagged Signal Region of the $ c\mu$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the c-tag Signal Region of the $ c\mu$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the b-tag Signal Region of the $ c\mu$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the 0-tag Signal Region of the $ be$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the 1-tag Signal Region of the $ be$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the 2-tag Signal Region of the $ be$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the 0-tag Signal Region of the $ b\mu$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the 1-tag Signal Region of the $ b\mu$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
Distribution of the resonance mass in the 2-tag Signal Region of the $ b\mu$ channel for the post-fit background, the observed data, and the expected signal with $m_{LQ} = 1$ TeV.
The observed and expected limits on the leptoquark pair production cross-section at 95% CL for $\mathcal{B}=1$ into electrons, shown as a function of $m_{LQ}$ for the $qe$ channel.
The observed and expected limits on the leptoquark pair production cross-section at 95% CL for $\mathcal{B}=1$ into muons, shown as a function of $m_{LQ}$ for the $q\mu$ channel.
The observed and expected limits on the leptoquark pair production cross-section at 95% CL for $\mathcal{B}=1$ into electrons, shown as a function of $m_{LQ}$ for the $ce$ channel.
The observed and expected limits on the leptoquark pair production cross-section at 95% CL for $\mathcal{B}=1$ into muons, shown as a function of $m_{LQ}$ for the $c\mu$ channel.
The observed and expected limits on the leptoquark pair production cross-section at 95% CL for $\mathcal{B}=1$ into electrons, shown as a function of $m_{LQ}$ for the $be$ channel.
The observed and expected limits on the leptoquark pair production cross-section at 95% CL for $\mathcal{B}=1$ into muons, shown as a function of $m_{LQ}$ for the $b\mu$ channel.
The observed and expected limits on the leptoquark branching ratio at 95% CL, shown as a function of $m_{LQ}$ for the $qe$ channel.
The observed and expected limits on the leptoquark branching ratio at 95% CL, shown as a function of $m_{LQ}$ for the $q\mu$ channel.
The observed and expected limits on the leptoquark branching ratio at 95% CL, shown as a function of $m_{LQ}$ for the $ce$ channel.
The observed and expected limits on the leptoquark branching ratio at 95% CL, shown as a function of $m_{LQ}$ for the $c\mu$ channel.
The observed and expected limits on the leptoquark branching ratio at 95% CL, shown as a function of $m_{LQ}$ for the $be$ channel.
The observed and expected limits on the leptoquark branching ratio at 95% CL, shown as a function of $m_{LQ}$ for the $b\mu$ channel.
The signal selection efficiency x acceptance summed over all signal regions, for all masses and LQ decay channels considered.
The observed and expected limits for all masses and LQ decay channels considered.
Cutflow Table in the electron channel, considering signal samples with LQ mass of 1 TeV.
Cutflow Table in the muon channel, considering signal samples with LQ mass of 1 TeV.
A search for a heavy neutral Higgs boson, $A$, decaying into a $Z$ boson and another heavy Higgs boson, $H$, is performed using a data sample corresponding to an integrated luminosity of 139 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC. The search considers the $Z$ boson decaying into electrons or muons and the $H$ boson into a pair of $b$-quarks or $W$ bosons. The mass range considered is 230-800 GeV for the $A$ boson and 130-700 GeV for the $H$ boson. The data are in good agreement with the background predicted by the Standard Model, and therefore 95% confidence-level upper limits for $\sigma \times B(A\rightarrow ZH) \times B(H\rightarrow bb$ or $H\rightarrow WW)$ are set. The upper limits are in the range 0.0062-0.380 pb for the $H\rightarrow bb$ channel and in the range 0.023-8.9 pb for the $H\rightarrow WW$ channel. An interpretation of the results in the context of two-Higgs-Doublet models is also given.
The mass distribution of the bb system before any mbb window cuts for the 2 tag category in b-associated production. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mass distribution of the bb system before any mbb window cuts for the 3 tag category in b-associated production. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH)=(600, 300) GeV in the 2 tag category with gluon-gluon fusion production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH)=(600, 300) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH)=(670, 500) GeV in the 2 tag category with gluon-gluon fusion production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 500) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for a narrow width A boson produced via gluon-gluon fusion. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for a narrow width A boson produced via b-associated production. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-1 with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-1 with tan(beta)=5. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-1 with tan(beta)=10. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=5. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=10. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=20. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the lepton specific 2HDM with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the lepton specific 2HDM with tan(beta)=2. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the lepton specific 2HDM with tan(beta)=3. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=5. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=10. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=20. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
The mass distribution of the 4q system before any m4q window cuts for gluon-gluon fusion for the llWW channel. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH)=(600, 300) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH)=(670, 500) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->WW) in pb for a narrow width A boson produced via gluon-gluon fusion production. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 10% with respect to its mass, produced via gluon-gluon fusion for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 10% with respect to its mass, via b-associated production for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 20% with respect to its mass, produced via gluon-gluon fusion for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 20% with respect to its mass, via b-associated production for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->WW) in pb for an A boson with a natural width that is 10% with respect to its mass, produced via gluon-gluon fusion for the llWW final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->WW) in pb for an A boson with a natural width that is 20% with respect to its mass, produced via gluon-gluon fusion for the llWW final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 130) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 130) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (450, 140) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (450, 140) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 150) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 150) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 160) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 160) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 170) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 170) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 180) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 180) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (420, 190) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (420, 190) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (490, 200) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (490, 200) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (430, 210) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (430, 210) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 220) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 220) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (500, 230) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (500, 230) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (510, 240) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (510, 240) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 250) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 250) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 260) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 260) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (530, 270) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (530, 270) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 280) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 280) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 290) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 290) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 300) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 310) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 310) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (560, 320) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (560, 320) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 330) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 330) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 340) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 340) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 350) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 350) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 360) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 360) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (590, 370) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (590, 370) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 380) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 380) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 390) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 390) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (610, 400) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (610, 400) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 410) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 410) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 420) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 420) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 430) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 430) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 440) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 440) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (640, 450) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (640, 450) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 460) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 460) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 470) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 470) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (660, 480) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (660, 480) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 490) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 490) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 500) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 510) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 510) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 520) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 520) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (690, 530) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (690, 530) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 540) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 540) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 550) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 550) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 560) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 560) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 570) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 570) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (720, 580) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (720, 580) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 590) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 590) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 600) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 600) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (740, 610) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (740, 610) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 620) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 620) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 630) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 630) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 640) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 640) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 650) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 650) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (770, 660) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (770, 660) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 670) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 670) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 680) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 680) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (790, 690) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (790, 690) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 130) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 130) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (450, 140) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (450, 140) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 150) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 150) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 160) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 160) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 170) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 170) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 180) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 180) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (420, 190) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (420, 190) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (490, 200) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (490, 200) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (430, 210) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (430, 210) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 220) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 220) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (500, 230) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (500, 230) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (510, 240) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (510, 240) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 250) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 250) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 260) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 260) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (530, 270) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (530, 270) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 280) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 280) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 290) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 290) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 300) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 310) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 310) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (560, 320) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (560, 320) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 330) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 330) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 340) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 340) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 350) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 350) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 360) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 360) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (590, 370) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (590, 370) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 380) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 380) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 390) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 390) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (610, 400) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (610, 400) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 410) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 410) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 420) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 420) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 430) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 430) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 440) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 440) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (640, 450) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (640, 450) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 460) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 460) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 470) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 470) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (660, 480) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (660, 480) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 490) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 490) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 500) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 510) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 510) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 520) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 520) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (690, 530) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (690, 530) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 540) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 540) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 550) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 550) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 560) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 560) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 570) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 570) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (720, 580) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (720, 580) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 590) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 590) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 600) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 600) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (740, 610) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (740, 610) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 620) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 620) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 630) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 630) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 640) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 640) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 650) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 650) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (770, 660) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (770, 660) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 670) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 670) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 680) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 680) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (790, 690) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (790, 690) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (400, 200) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (400, 200) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (430, 210) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (430, 210) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (440, 220) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 220) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (500, 230) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (500, 230) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (510, 240) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (510, 240) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (520, 250) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 250) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (520, 260) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 260) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (530, 270) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (530, 270) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (540, 280) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 280) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (540, 290) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 290) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (550, 300) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (550, 310) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 310) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (560, 320) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (560, 320) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (570, 330) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 330) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (570, 340) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 340) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (580, 350) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 350) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (580, 360) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 360) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (590, 370) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (590, 370) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (600, 380) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 380) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (600, 390) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 390) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (610, 400) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (610, 400) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (620, 410) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 410) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (620, 420) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 420) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (630, 430) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 430) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (630, 440) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 440) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (640, 450) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (640, 450) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (650, 460) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 460) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (650, 470) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 470) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (660, 480) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (660, 480) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (670, 490) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 490) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (670, 500) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (680, 510) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 510) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (680, 520) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 520) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (690, 530) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (690, 530) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (700, 540) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 540) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (700, 550) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 550) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (710, 560) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 560) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (710, 570) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 570) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (720, 580) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (720, 580) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (730, 590) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 590) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (730, 600) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 600) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (740, 610) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (740, 610) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (750, 620) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 620) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (750, 630) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 630) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (760, 640) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 640) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (760, 650) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 650) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (770, 660) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (770, 660) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (780, 670) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 670) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (780, 680) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 680) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (790, 690) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (790, 690) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (800, 700) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (800, 700) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
A study of $B_c^+\to J/\psi D_s^+$ and $B_c^+\to J/\psi D_s^{*+}$ decays using 139 fb$^{-1}$ of integrated luminosity collected with the ATLAS detector from $\sqrt{s} = 13$ TeV $pp$ collisions at the LHC is presented. The ratios of the branching fractions of the two decays to the branching fraction of the $B_c^+\to J/\psi \pi^+$ decay are measured: $\mathcal B(B_c^+\to J/\psi D_s^+)/\mathcal B(B_c^+\to J/\psi \pi^+) = 2.76\pm 0.47$ and $\mathcal B(B_c^+\to J/\psi D_s^{*+})/\mathcal B(B_c^+\to J/\psi \pi^+) = 5.33\pm 0.96$. The ratio of the branching fractions of the two decays is found to be $\mathcal B(B_c^+\to J/\psi D_s^{*+})/\mathcal B(B_c^+\to J/\psi D_s^+) = 1.93\pm0.26$. For the $B_c^+\to J/\psi D_s^{*+}$ decay, the transverse polarization fraction, $\Gamma_{\pm\pm}/\Gamma$, is measured to be $0.70\pm0.11$. The reported uncertainties include both the statistical and systematic components added in quadrature. The precision of the measurements exceeds that in all previous studies of these decays. These results supersede those obtained in the earlier ATLAS study of the same decays with $\sqrt{s} = 7$ and 8 TeV $pp$ collision data. A comparison with available theoretical predictions for the measured quantities is presented.
Measured values of $R_{D_s^+/\pi^+}$, $R_{D_s^{*+}/\pi^+}$, $R_{D_s^{*+}/D_s^+}$ ratios of branching fractions, fraction of transverse polarization $\Gamma_{\pm\pm}/\Gamma$ with their statistical uncertainties and full breakdown of systematic uncertainties. Predictions of various theory calculations are also shown with their uncertainties where available, as well as the estimates based on similar decays of light $B$ mesons.
Parameters of the $B_c^+\to J/\psi D_s^+$ and $B_c^+\to J/\psi D_s^{*+}$ signals obtained with the unbinned extended maximum-likelihood fit to the data. Only the statistical uncertainties are included. No acceptance or efficiency corrections are applied to the signal yields.
Parameters of the $B_c^+\to J/\psi \pi^+$ signal obtained with the unbinned extended maximum-likelihood fit. Only the statistical uncertainties are included. No efficiency correction is applied to the signal yield.
Summary of the total efficiencies. Quoted uncertainties correspond to statistical uncertainties of the simulated samples used. For the $B_c^+\to J/\psi \pi^+$ channel, the efficiency $\epsilon_{B_c^+\to J/\psi \pi^+}$ entering the equations for $R_{D_s^{(*)+}/\pi^+}$ is shown, while the efficiency for the full dataset is not defined.
This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for $e^+ \mu^-$ and $e^- \mu^+$ pairs to constrain physics processes beyond the Standard Model. It uses $139 \text{fb}^{-1}$ of proton$-$proton collision data recorded at $\sqrt{s} = 13$ TeV at the LHC. Targeting sources of new physics which prefer final states containing $e^{+}\mu^{-}$ to $e^{-}\mu^{+}$, the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the $R$-parity-violating coupling $\lambda'_{231}$ is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when $g_{\text{1R}}^{eu}=g_{\text{1R}}^{\mu c}=1$, at 95% confidence level. The limit on the coupling reduces to $g_{\text{1R}}^{eu}=g_{\text{1R}}^{\mu c}=0.46$ for a mass of 1420 GeV.
Observed yields, and (post-fit) expected yields for the data-driven SM estimates. Yields are shown for the benchmark RPV-supersymmetry signal points in SR-RPV and the leptoquark signal points in SR-LQ after a fit excluding the $e^{+}\mu^{-}$ signal region and setting $\mu_{\text{sig}}=1$. Small weights correcting for muon charge biases affect all rows except that containing the fake-lepton estimate. These weights, $w_i$, cause non-integer yields. The uncertainties, $\sqrt{\sum_i w_i^2}$, are given for data to support the choice made to model the yields with a Poisson distribution.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.0$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.0$.
The $1\sigma_{\text{exp}}$ variation of the expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.0$.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.1$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.1$.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.15$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.15$.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.2$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.2$.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.4$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.4$.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0.6$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=0p6$.
The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.5$.
The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.5$.
The observed exclusion contour at 95% CL as a function of the leptoquark mass and coupling strength.
The expected exclusion contour at 95% CL as a function of the leptoquark mass and coupling strength.
The minus $1\sigma_{\text{theory}}$ variation of the observed exclusion contour at 95% CL as a function of the leptoquark mass and coupling strength.
The plus $1\sigma_{\text{theory}}$ variation of the observed exclusion contour at 95% CL as a function of the leptoquark mass and coupling strength.
The $1\sigma_{\text{exp}}$ variation of the expected exclusion contour at 95% CL as a function of the leptoquark mass and coupling strength.
Observed yields, and fake lepton background yields in the $e^{+}\mu^{-}$ and $e^{-}\mu^{+}$ channels of SR-MET, along with the results of the $e^{+}\mu^{-}/e^{-}\mu^{+}$ ratio measurement and 1-sided p-value in SR-MET, binned in $M_{T2}$.
Observed yields, and fake lepton background yields in the $e^{+}\mu^{-}$ and $e^{-}\mu^{+}$ channels of SR-JET, along with the results of the $e^{+}\mu^{-}/e^{-}\mu^{+}$ ratio measurement and 1-sided p-value in SR-JET, binned in $H_{\text{P}}$.
Observed and expected 95% CL upper limits on the total number of signal events entering the $e^{+}\mu^{-}$ and $e^{-}\mu^{+}$ channels of each bin of SR-MET. The regions are binned in the same way as the ratio $\rho$ measurement. The limits are shown for a selection of 'z' values, where 'z' is the fraction of the total signal events entering the $e^{+}\mu^{-}$ channel.
Observed and expected 95% CL upper limits on the total number of signal events entering the $e^{+}\mu^{-}$ and $e^{-}\mu^{+}$ channels of each bin of SR-JET. The regions are binned in the same way as the ratio $\rho$ measurement. The limits are shown for a selection of 'z' values, where 'z' is the fraction of the total signal events entering the $e^{+}\mu^{-}$ channel.
Signal yields following each cut in the analysis, for representative $R$-parity-violating supersymmetry and leptoquark signals. All yields are MC generator-weighted and normalised to $139~\text{fb}^{-1}$. The cut labelled `Preselection' includes trigger requirements, and requires exactly one Baseline electron and one Baseline muon. At this point, the muon charge-bias correction weights are also applied. The $R$-parity-violating supersymmetry models were generated by specifying a top-quark in the final state and applying a two-lepton filter, hence the first row also includes events where the top quark decays to an electron.
The observation of forward proton scattering in association with lepton pairs ($e^+e^-+p$ or $\mu^+\mu^-+p$) produced via photon fusion is presented. The scattered proton is detected by the ATLAS Forward Proton spectrometer while the leptons are reconstructed by the central ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of $\sqrt{s} = 13$ TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb$^{-1}$. A total of 57 (123) candidates in the $ee+p$ ($\mu\mu+p$) final state are selected, allowing the background-only hypothesis to be rejected with a significance exceeding five standard deviations in each channel. Proton-tagging techniques are introduced for cross-section measurements in the fiducial detector acceptance, corresponding to $\sigma_{ee+p}$ = 11.0 $\pm$ 2.6 (stat.) $\pm$ 1.2 (syst.) $\pm$ 0.3 (lumi.) fb and $\sigma_{\mu\mu+p}$ = 7.2 $\pm$ 1.6 (stat.) $\pm$ 0.9 (syst.) $\pm$ 0.2 (lumi.) fb in the dielectron and dimuon channel, respectively.
The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity
A measurement of event-shape variables in proton$-$proton collisions at large momentum transfer is presented using data collected at $\sqrt{s} = 13$ TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb$^{-1}$. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ = 3 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ = 4 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ = 5 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ = 3 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ = 4 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ = 5 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ = 3 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ = 4 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ = 5 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ $\geq$ 6 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ = 3 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ = 4 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ = 5 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ = 3 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ = 4 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ = 5 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ = 3 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ = 4 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ = 5 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ $\geq$ 6 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ = 3 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ = 4 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ = 5 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ = 3 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ = 4 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ = 5 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ = 3 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ = 4 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ = 5 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ $\geq$ 6 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ = 3 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ = 4 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ = 5 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ = 3 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ = 4 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ = 5 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ = 3 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ = 4 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ = 5 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ $\geq$ 6 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ = 3 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ = 4 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ = 5 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ = 3 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ = 4 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ = 5 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ = 3 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ = 4 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ = 5 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ $\geq$ 6 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ = 3 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ = 4 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ = 5 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ = 3 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ = 4 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ = 5 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ = 3 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ = 4 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ = 5 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ $\geq$ 6 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured total cross section for multijet production as a function of $n^{\textrm{jet}}$ for 1.0 < $H_{\textrm{T2}}$ < 1.5 TeV. The total cross-sections are measured in the same fiducial phase-space region than the measured relative cross-sections as functions of event-shape variables for the corresponding $H_{\textrm{T2}}$ interval. The measurement in the last bin corresponds to $n^{\textrm{jet}}\geq$ 6.
Measured total cross section for multijet production as a function of $n^{\textrm{jet}}$ for 1.5 < $H_{\textrm{T2}}$ < 2.0 TeV. The total cross-sections are measured in the same fiducial phase-space region than the measured relative cross-sections as functions of event-shape variables for the corresponding $H_{\textrm{T2}}$ interval. The measurement in the last bin corresponds to $n^{\textrm{jet}}\geq$ 6.
Measured total cross section for multijet production as a function of $n^{\textrm{jet}}$ for $H_{\textrm{T2}}$ > 2.0 TeV. The total cross-sections are measured in the same fiducial phase-space region than the measured relative cross-sections as functions of event-shape variables for the corresponding $H_{\textrm{T2}}$ interval. The measurement in the last bin corresponds to $n^{\textrm{jet}}\geq$ 6.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}\geq$ 3 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}\geq$4 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}\geq$ 5 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}\geq$ 3 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}\geq$ 4 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}\geq$ 5 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}\geq$ 3 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}\geq$ 4 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}\geq$ 5 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $\tau_{\perp}$ for $n^{\textrm{jet}}$ $\geq$ 6 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}\geq$ 3 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}\geq$ 4 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}\geq$ 5 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}\geq$ 3 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}\geq$ 4 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}\geq$ 5 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}\geq$ 3 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}\geq$ 4 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}\geq$ 5 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ $\geq$ 6 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}\geq$ 3 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}\geq$ 4 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}\geq$ 5 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}\geq$ 3 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}\geq$ 4 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}\geq$ 5 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}\geq$ 3 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}\geq$ 4 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}\geq$ 5 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of S$_{\perp}$ for $n^{\textrm{jet}}$ $\geq$ 6 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}\geq$ 3 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}\geq$ 4 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}\geq$ 5 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}\geq$ 3 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}\geq$ 4 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}\geq$ 5 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}\geq$ 3 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}\geq$ 4 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}\geq$ 5 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $A$ for $n^{\textrm{jet}}$ $\geq$ 6 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}\geq$ 3 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}\geq$ 4 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}\geq$ 5 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}\geq$ 3 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}\geq$ 4 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}\geq$ 5 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}\geq$ 3 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}\geq$ 4 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}\geq$ 5 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $C$ for $n^{\textrm{jet}}$ $\geq$ 6 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}\geq$ 3 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}\geq$ 4 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}\geq$ 5 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1 TeV < $H_{\textrm{T2}}$ < 1.5 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}\geq$ 3 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}\geq$ 4 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}\geq$ 5 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ $\geq$ 6 and 1.5 TeV < $H_{\textrm{T2}}$ < 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}\geq$ 3 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}\geq$ 4 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}\geq$ 5 and $H_{\textrm{T2}}$ > 2.0 TeV.
Measured relative cross sections for multijet production as a function of $D$ for $n^{\textrm{jet}}$ $\geq$ 6 and $H_{\textrm{T2}}$ > 2.0 TeV.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.