A model-independent measurement of the differential production cross section of the Higgs boson decaying into a pair of W bosons, with a final state including two jets produced in association, is presented. In the analysis, events are selected in which the decay products of the two W bosons consist of an electron, a muon, and missing transverse momentum. The model independence of the measurement is maximized by making use of a discriminating variable that is agnostic to the signal hypothesis developed through machine learning. The analysis is based on proton-proton collision data at $\sqrt{s}$ = 13 TeV collected with the CMS detector from 2012$-$2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The production cross section is measured as a function of the difference in azimuthal angle between the two jets. The differential cross section measurements are used to constrain Higgs boson couplings within the standard model effective field theory framework.
A search for the violation of the charge-parity ($CP$) symmetry in the production of top quarks in association with Z bosons is presented, using events with at least three charged leptons and additional jets. The search is performed in a sample of proton-proton collision data collected by the CMS experiment at the CERN LHC in 2016-2018 at a center-of-mass energy of 13 TeV and in 2022 at 13.6 TeV, corresponding to a total integrated luminosity of 173 fb$^{-1}$. For the first time in this final state, observables that are odd under the $CP$ transformation are employed. Also for the first time, physics-informed machine-learning techniques are used to construct these observables. While for standard model (SM) processes the distributions of these observables are predicted to be symmetric around zero, $CP$-violating modifications of the SM would introduce asymmetries. Two $CP$-odd operators $\mathcal{O}_\text{tW}^\text{I}$ and $\mathcal{O}_\text{tZ}^\text{I}$ in the SM effective field theory are considered that may modify the interactions between top quarks and electroweak bosons. The obtained results are consistent with the SM prediction within two standard deviations, and exclusion limits on the associated Wilson coefficients of $-$2.7 $\lt$$c_\text{tW}^\text{I}$$\lt$ 2.5 and $-$0.2 $\lt$$c_\text{tZ}^\text{I}$$\lt$ 2.0 are set at 95% confidence level. The largest discrepancy is observed in $c_\text{tZ}^\text{I}$ where data is consistent with positive values, with an observed local significance with respect to the SM hypothesis of 2.5 standard deviations, when only linear terms are considered.
Inclusive and differential cross section measurements of top quark pair ($\mathrm{t\bar{t}}$) production in association with a photon ($γ$) are performed as a function of lepton, photon, top quark, and $\mathrm{t\bar{t}}$ kinematic observables, using data from proton-proton collisions at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events containing two leptons (electrons or muons) and a photon in the final state are considered. The fiducial cross section of $\mathrm{t\bar{t}}γ$ is measured to be 137 $\pm$ 8 fb, in a phase space including events with a high momentum, isolated photon. The fiducial cross section of $\mathrm{t\bar{t}}γ$ is also measured to be 56 $\pm$ 5 fb when considering only events where the photon is emitted in the production part of the process. Both measurements are in agreement with the theoretical predictions, of 126 $\pm$ 19 fb and 57 $\pm$ 5 fb, respectively. Differential measurements are performed at the particle and parton levels. Additionally, inclusive and differential ratios between the cross sections of $\mathrm{t\bar{t}}γ$ and $\mathrm{t\bar{t}}$ production are measured. The inclusive ratio is found to be 0.0133 $\pm$ 0.0005, in agreement with the standard model prediction of 0.0127 $\pm$ 0.0008. The top quark charge asymmetry in $\mathrm{t\bar{t}}γ$ production is also measured to be $-$0.012 $\pm$ 0.042, compatible with both the standard model prediction and with no asymmetry.
The first observation of single top quark production in association with a W and a Z boson in proton-proton collisions is reported. The analysis uses data at center-of-mass energies of 13 and 13.6 TeV recorded with the CMS detector at the CERN LHC, corresponding to a total integrated luminosity of 200 fb$^{-1}$. Events with three or four charged leptons, which can be electrons or muons, are selected. Advanced machine-learning algorithms and improved reconstruction methods, compared to an earlier analysis, result in an unprecedented sensitivity to tWZ production. The measured cross sections for tWZ production are 248 $\pm$ 52 fb and 244 $\pm$ 74 fb for $\sqrt{s}$ =13 and 13.6 TeV, respectively. The signal is established with a statistical significance of 5.8 standard deviations, with 3.5 expected, compared to the background-only hypothesis.
A search for pseudoscalar or scalar bosons decaying to a top quark pair ($\mathrm{t\bar{t}}$) in final states with one or two charged leptons is presented. The analyzed proton-proton collision data was recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. The invariant mass $m_\mathrm{t\bar{t}}$ of the reconstructed $\mathrm{t\bar{t}}$ system and variables sensitive to its spin and parity are used to discriminate against the standard model $\mathrm{t\bar{t}}$ background. Interference between pseudoscalar or scalar boson production and the standard model $\mathrm{t\bar{t}}$ continuum is included, leading to peak-dip structures in the $m_\mathrm{t\bar{t}}$ distribution. An excess of the data above the background prediction, based on perturbative quantum chromodynamics (QCD) calculations, is observed near the kinematic $\mathrm{t\bar{t}}$ production threshold, while good agreement is found for high $m_\mathrm{t\bar{t}}$. The data are consistent with the background prediction if the contribution from the production of a color-singlet ${}^1\mathrm{S}_0^{[1]}$$\mathrm{t\bar{t}}$ quasi-bound state $η_\mathrm{t}$, predicted by nonrelativistic QCD, is added. Upper limits at 95% confidence level are set on the coupling between the pseudoscalar or scalar bosons and the top quark for boson masses in the range 365$-$1000 GeV, relative widths between 0.5 and 25%, and two background scenarios with or without $η_\mathrm{t}$ contribution.
The traditional quark model accounts for the existence of baryons, such as protons and neutrons, which consist of three quarks, as well as mesons, composed of a quark-antiquark pair. Only recently has substantial evidence started to accumulate for exotic states composed of four or five quarks and antiquarks. The exact nature of their internal structure remains uncertain. This paper reports the first measurement of quantum numbers of the recently discovered family of three all-charm tetraquarks, using data collected by the CMS experiment at the Large Hadron Collider from 2016 to 2018. The angular analysis techniques developed for the discovery and characterization of the Higgs boson have been applied to the new exotic states. Here we show that the quantum numbers for parity $P$ and charge conjugation $C$ symmetries are found to be +1. The spin $J$ of these exotic states is consistent with 2$\hbar$, while 0$\hbar$ and 1$\hbar$ are excluded at 95% and 99% confidence level, respectively. The $J^{PC} = 2^{++}$ assignment implies particular configurations of constituent spins and orbital angular momenta, which constrain the possible internal structure of these tetraquarks.
Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p$-$p$-$p and p$-$p$-\Lambda$ systems in terms of three-particle correlation functions carried out for pp collisions at $\sqrt{s} = 13$ TeV. Three-particle cumulants are extracted from the correlation functions by applying the Kubo formalism, where the three-particle interaction contribution to these correlations can be isolated after subtracting the known two-body interaction terms. A negative cumulant is found for the p$-$p$-$p system, hinting to the presence of a residual three-body effect while for p$-$p$-\Lambda$ the cumulant is consistent with zero. This measurement demonstrates the accessibility of three-baryon correlations at the LHC.
Two-particle transverse momentum differential correlators, recently measured in Pb--Pb collisions at energies available at the CERN Large Hadron Collider (LHC), provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behaviour. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at $\sqrt{s} = 7$ TeV and $\sqrt{s_{\rm NN}} = 5.02$ TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p--Pb to Pb--Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed.
This paper presents a search for a new Z' vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 139 fb$^{-1}$. The new gauge boson Z' is predicted by $L_{\mu}-L_{\tau}$ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4$\mu$) final state, using a deep learning neural network classifier to separate the Z' signal from the Standard Model background events. The di-muon invariant masses in the $4\mu$ events are used to extract the Z' resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z' production cross-section times the decay branching fraction of $pp \rightarrow Z'\mu\mu \rightarrow 4\mu$ are set from 0.31 to 4.3 fb for the Z' mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, $g_{Z'}$, of the Z' boson to the second and third generation leptons above 0.003 - 0.2 have been excluded.
A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson's mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.