Jet and underlying event properties as a function of particle multiplicity in proton-proton collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 73 (2013) 2674, 2013.
Inspire Record 1261026 DOI 10.17182/hepdata.68128

Characteristics of multi-particle production in proton-proton collisions at $\sqrt{s}$=7 TeV are studied as a function of the charged-particle multiplicity, $N_{ch}$. The produced particles are separated into two classes: those belonging to jets and those belonging to the underlying event. Charged particles are measured with pseudorapidity |η|<2.4 and transverse momentum $p_T$ > 0.25 GeV/c. Jets are reconstructed from charged-particles only and required to have $p_T$ > 5 GeV/c. The distributions of jet $p_T$, average $p_T$ of charged particles belonging to the underlying event or to jets, jet rates, and jet shapes are presented as functions of $N_{ch}$ and compared to the predictions of the PYTHIA and HERWIG event generators. Predictions without multi-parton interactions fail completely to describe the $N_{ch}$-dependence observed in the data. For increasing $N_{ch}$, PYTHIA systematically predicts higher jet rates and harder $p_T$ spectra than seen in the data, whereas HERWIG shows the opposite trends. At the highest multiplicity, the data–model agreement is worse for most observables, indicating the need for further tuning and/or new model ingredients.

15 data tables match query

Mean $p_T$, in-jet charged particles.

Mean $p_T$, leading in-jet charged particle.

Mean $p_T$, charged particle jets, $p^{ch.jet}_T > 5$ GeV, $|\eta^{ch.jet}| < 1.9$.

More…

Measurement of the Underlying Event Activity in Proton-Proton Collisions at 0.9 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 70 (2010) 555-572, 2010.
Inspire Record 857644 DOI 10.17182/hepdata.55126

A measurement of the underlying activity in scattering processes with transverse momentum scale in the GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged hadron production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged hadrons with pseudorapidity eta < 2, p_T > 0.5 GeV/c, and azimuthal direction transverse to that of the leading object.

0 data tables match query

Measurement of the Underlying Event Activity at the LHC with sqrt(s)= 7 TeV and Comparison with sqrt(s) = 0.9 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 09 (2011) 109, 2011.
Inspire Record 916908 DOI 10.17182/hepdata.57696

A measurement of the underlying activity in scattering processes with a hard scale in the several GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 and 7 TeV, using data collected by the CMS experiment at the LHC. The production of charged particles with pseudorapidity |eta| < 2 and transverse momentum pT > 0.5 GeV/c is studied in the azimuthal region transverse to that of the leading set of charged particles forming a track-jet. A significant growth of the average multiplicity and scalar-pT sum of the particles in the transverse region is observed with increasing pT of the leading track-jet, followed by a much slower rise above a few GeV/c. For track-jet pT larger than a few GeV/c, the activity in the transverse region is approximately doubled with a centre-of-mass energy increase from 0.9 to 7 TeV. Predictions of several QCD-inspired models as implemented in PYTHIA are compared to the data.

0 data tables match query

Measurement of underlying event characteristics using charged particles in pp collisions at $\sqrt{s} = 900 GeV$ and 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 83 (2011) 112001, 2011.
Inspire Record 879407 DOI 10.17182/hepdata.57151

Measurements of charged particle distributions, sensitive to the underlying event, have been performed with the ATLAS detector at the LHC. The measurements are based on data collected using a minimum-bias trigger to select proton-proton collisions at center-of-mass energies of 900 GeV and 7 TeV. The 'underlying event' is defined as those aspects of a hadronic interaction attributed not to the hard scattering process, but rather to the accompanying interactions of the rest of the proton. Three regions are defined in azimuthal angle with respect to the highest-pt charged particle in the event, such that the region transverse to the dominant momentum-flow is most sensitive to the underlying event. In each of these regions, distributions of the charged particle multiplicity, pt density, and average pt are measured. The data show a higher underlying event activity than that predicted by Monte Carlo models tuned to pre-LHC data.

1 data table match query

Particle PT Density versus Leading Particle Pseudorapidity at centre-of-mass energy 7000 GeV for a lower PT cut of 0.1 GeV.


Charged particle multiplicities in pp interactions at sqrt(s) = 0.9, 2.36, and 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 01 (2011) 079, 2011.
Inspire Record 879315 DOI 10.17182/hepdata.57909

Measurements of primary charged hadron multiplicity distributions are presented for non-single-diffractive events in proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36, and 7 TeV, in five pseudorapidity ranges from |eta|<0.5 to |eta|<2.4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning runs in 2009 and the 7 TeV run in 2010. The multiplicity distribution at sqrt(s) = 0.9 TeV is in agreement with previous measurements. At higher energies the increase of the mean multiplicity with sqrt(s) is underestimated by most event generators. The average transverse momentum as a function of the multiplicity is also presented. The measurement of higher-order moments of the multiplicity distribution confirms the violation of Koba-Nielsen-Olesen scaling that has been observed at lower energies.

2 data tables match query

Mean multiplicity for charged hadron production for |pseudorapidity| < 2.4.

Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 2.4 and PT > 500 MeV at a centre-of-mass energy of 7000 GeV.


Charged-particle distributions in $pp$ interactions at $\sqrt{s}=8$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 403, 2016.
Inspire Record 1426695 DOI 10.17182/hepdata.73012

This paper presents measurements of distributions of charged particles which are produced in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector at the LHC. A special dataset recorded in 2012 with a small number of interactions per beam crossing (below 0.004) and corresponding to an integrated luminosity of $160 \mathrm{\mu b^{-1}}$ was used. A minimum-bias trigger was utilised to select a data sample of more than 9 million collision events. The multiplicity, pseudorapidity, and transverse momentum distributions of charged particles are shown in different regions of kinematics and charged-particle multiplicity, including measurements of final states at high multiplicity. The results are corrected for detector effects and are compared to the predictions of various Monte Carlo event generator models which simulate the full hadronic final state.

0 data tables match query