The photoproduction of $D^{*\pm}$ mesons has been measured with the ZEUS detector at HERA at three different ep centre-of-mass energies, $\sqrt{s}$, of 318, 251 and 225 GeV. For each data set, $D^*$ mesons were required to have transverse momentum, $p_T^{D^*}$, and pseudorapidity, $\eta^{D^*}$, in the ranges $1.9 < p_T^{D^*} < 20$ GeV and $|\eta^{D^*}|<1.6$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$. The dependence on $\sqrt{s}$ was studied by normalising to the high-statistics measurement at $\sqrt{s} =318$ GeV. This led to the cancellation of a number of systematic effects both in data and theory. Predictions from next-to-leading-order QCD describe the $\sqrt{s}$ dependence of the data well.
The cross sections for the production of D*+- mesons normalised to the HER data sample.
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.
Projections of the correlation function C.
Projections of the correlation function C.
Projections of the correlation function C.
The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\sqrt{s} = 0.9$ and $7$ TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\rm{t}} < 1.05$ GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \pm 0.006 (stat.) \pm 0.014 (syst.)$ at $0.9$ TeV and $R_{|y| < 0.5} = 0.991 \pm 0.005 (stat.) \pm 0.014 (syst.)$ at $7$ TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.
The PT dependence of the pbar/p ratio for the central rapidity region ABS(YRAP)<0.5.
The central rapidity pbar/p ratio as a function of the rapidity interval Ybeam-Ybaryon and centre-of-mass energy. As well as the present ALICE measurements this table also lists the values from other experiments (see the text of the paper for details).
A first measurement is reported of the longitudinal proton structure function F_L(x,Q^2) at the ep collider HERA. It is based on inclusive deep inelastic e^+p scattering cross section measurements with a positron beam energy of 27.5 GeV and proton beam energies of 920, 575 and 460 GeV. Employing the energy dependence of the cross section, F_L is measured in a range of squared four-momentum transfers 12 < Q^2 < 90 GeV^2 and low Bjorken x 0.00024 < x < 0.0036. The F_L values agree with higher order QCD calculations based on parton densities obtained using cross section data previously measured at HERA.
The measured longitudinal proton structure function FL at Q**2 = 12 GeV**2 extracted from the combined 920,575 and 450 GeV proton energy data.
The measured longitudinal proton structure function FL at Q**2 = 15 GeV**2 extracted from the combined 920,575 and 450 GeV proton energy data.
The measured longitudinal proton structure function FL at Q**2 = 20 GeV**2 extracted from the combined 920,575 and 450 GeV proton energy data.
Diffractive photoproduction of D*+/-(2010) mesons was measured with the ZEUS detector at the ep collider HERA, using an integrated luminosity of 78.6 pb^{-1}. The D* mesons were reconstructed in the kinematic range: transverse momentum p_T(D*) > 1.9 GeV and pseudorapidity |eta(D*)| < 1.6, using the decay D*+ -> D0 pi+_s followed by D0 -> K- pi+ (+c.c.). Diffractive events were identified by a large gap in pseudorapidity between the produced hadronic state and the outgoing proton. Cross sections are reported for photon-proton centre-of-mass energies in the range 130 < W < 300 GeV and for photon virtualities Q^2 < 1 GeV^2, in two ranges of the Pomeron fractional momentum x_pom < 0.035 and x_pom < 0.01. The relative contribution of diffractive events to the inclusive D*+/-(2010) photoproduction cross section is about 6%. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with diffractive QCD factorisation.
Total cross section integrated over the given kinematic range.
Ratio of diffractive to inclusive D* cross section.
Differential cross sections for diffractive photoproduction of D*+- mesons as a function of X(NAME=POMERON).
The production of energetic neutrons in $ep$ collisions has been studied with the ZEUS detector at HERA. The neutron energy and $p_T^2$ distributions were measured with a forward neutron calorimeter and tracker in a $40 \pb^{-1}$ sample of inclusive deep inelastic scattering (DIS) data and a $6 \pb^{-1}$ sample of photoproduction data. The neutron yield in photoproduction is suppressed relative to DIS for the lower neutron energies and the neutrons have a steeper $p_T^2$ distribution, consistent with the expectation from absorption models. The distributions are compared to HERA measurements of leading protons. The neutron energy and transverse-momentum distributions in DIS are compared to Monte Carlo simulations and to the predictions of particle exchange models. Models of pion exchange incorporating absorption and additional secondary meson exchanges give a good description of the data.
Ratio of leading neutron to inclusive cross sections integrated to the full PT range.
Normalized double differential cross sections for leading neutron production for the full DIS sample. Statistical errors only are given.
Normalized double differential cross sections for leading neutron production for the full DIS sample. Statistical errors only are given.
Cross sections for elastic production of J/Psi mesons in photoproduction and electroproduction are measured in electron proton collisions at HERA using an integrated luminosity of 55 pb^{-1}. Results are presented for photon virtualities Q^2 up to 80 GeV^2. The dependence on the photon-proton centre of mass energy W_{gamma p} is analysed in the range 40 < \Wgp < 305 GeV in photoproduction and 40 < \Wgp < 160 GeV in electroproduction. The \Wgp dependences of the cross sections do not change significantly with Q^2 and can be described by models based on perturbative QCD. Within such models, the data show a high sensitivity to the gluon density of the proton in the domain of low Bjorken x and low Q^2. Differential cross sections d\sigma/dt, where t is the squared four-momentum transfer at the proton vertex, are measured in the range |t|<1.2 GeV^2 as functions of \Wgp and Q^2. Effective Pomeron trajectories are determined for photoproduction and electroproduction. The J/Psi production and decay angular distributions are consistent with s-channel helicity conservation. The ratio of the cross sections for longitudinally and transversely polarised photons is measured as a function of Q^2 and is found to be described by perturbative QCD based models.
Cross section for elastic J/PSI photoproduction in Q**2 bins for W = 90 GeV and ABS(T) < 1.2 GeV**2.
Cross section for elastic J/PSI photoproduction in W bins for ABS(T) < 1.2 GeV**2 and Q**2 < 1 GeV**2.. There are two cross sections for the 205 to 235 GeV bin due to overlapping data sets. The mean is 151 +- 8 (DSYS=20) nb.
Cross section for elastic J/PSI photoproduction as a function of W in Q**2 bins for ABS(T) < 1.2 GeV**2.
Jet substructure and differential cross sections for jets produced in the photoproduction and deep inelastic ep scattering regimes have been measured with the ZEUS detector at HERA using an integrated luminosity of 82.2 pb-1. The substructure of jets has been studied in terms of the jet shape and subjet multiplicity for jets with transverse energies Et(jet) > 17 GeV. The data are well described by the QCD calculations. The jet shape and subjet multiplicity are used to tag gluon- and quark-initiated jets. Jet cross sections as functions of Et(jet), jet pseudorapidity, the jet-jet scattering angle, dijet invariant mass and the fraction of the photon energy carried by the dijet system are presented for gluon- and quark-tagged jets. The data exhibit the behaviour expected from the underlying parton dynamics. A value of alphas(Mz) of alphas(Mz) = 0.1176 +-0.0009(stat.) -0.0026 +0.0009 (exp.) -0.0072 +0.0091 (th.) was extracted from the measurements of jet shapes in deep inelastic scattering.
Measured mean integrated jet shape corrected to the hadron level in photoproduction with ET(C=JET) > 17 GeV.
Measured mean integrated jet shape corrected to the hadron level in photoproduction with ET(C=JET) > 17 GeV.
Measured mean integrated jet shape corrected to the hadron level in photoproduction with -1 < ETARAP(C=JET) < 2.5.
Dijet angular distributions of photoproduction events in which a $D^{*\pm}$ meson is produced in association with one of two energetic jets have been measured with the ZEUS detector at HERA, using an integrated luminosity of 120 pb$^{-1}$. Differential cross sections as a function of the angle between the charm-jet and the proton-beam direction in the dijet rest frame have been measured for samples enriched in direct or resolved photon events. The results are compared with predictions from leading-order parton-shower Monte Carlo models and with next-to-leading-order QCD calculations. The angular distributions show clear evidence for the existence of charm originating from the photon.
The differential cross section DSIG/DXOBS(C=GAMMA) as a function of XOBS(C=GAMMA).
The differential cross section DSIG/DXOBS(C=PROTON) as a function of XOBS(C=PROTON).
The dijet angular distributions as a function of the absolute value of the dijet scattering angle for two XOBS(C=GAMMA) regions separating resolved and direct photon processes.
Inclusive jet cross sections are measured in photoproduction at HERA using the H1 detector. The data sample of e+ p -> e+ + jet + X events in the kinematic range of photon virtualities Q^2 < 1 GeV^2 and photon-proton centre-of-mass energies 95 < W_gammap < 285 GeV represents an integrated luminosity of 24.1 pb^-1. Jets are defined using the inclusive k_T algorithm. Single- and multi-differential cross sections are measured as functions of jet transverse energy E_T^jet and pseudorapidity \eta^jet in the domain 5 < E_T^jet < 75 GeV and -1 < \eta^jet < 2.5. The cross sections are found to be in good agreement with next-to-leading order perturbative QCD calculations corrected for fragmentation and underlying event effects. The cross section differential in E_T^jet, which varies by six orders of magnitude over the measured range, is compared with similar distributions from p pbar colliders at equal and higher energies.
Measured differential E+ P cross section DSIG/DET for inclusive jet photoproduction (Q**2 < 1 GeV**2) integrated over the jet pseudorapidity range -1 to 2.5 in the W(C=GAMMA P) range 95 to 285 GeV.
Measured differential E+ P cross section DSIG/DET for inclusive jet photoproduction (Q**2 < 1 GeV**2) integrated over the jet pseudorapidity range -1 to 2.5 in the W(C=GAMMA P) ranges 95 to 212, and 212 to 285 GeV.
Measured differential E+ P cross section DSIG/DET for inclusive jet photoproduction for the two Q**2 ranges integrated over the jet pseudorapidity range -1to 2.5 in the W(C=GAMMA P) range 164 to 242 GeV.