Search for exclusive charmless B meson decays with the DELPHI detector at LEP

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 357 (1995) 255-266, 1995.
Inspire Record 397145 DOI 10.17182/hepdata.52353

Charmless hadronic decays of beauty mesons have been searched for using the data collected with the DELPHI detector at the LEP collider. Several two, three and four-body decay modes have been investigated. Particle identification was used to distinguish the final states with protons, kaons and pions. Three candidate events selected in two-body decay modes are interpreted as evidence for charmless B decays. No excess has been found in higher multiplicity modes and improved upper limits for some of the branching ratios are given.

3 data tables

Two body decay modes. Upper limits at 90% CL. In computing of limits the fractions of B/(d,u)(0,-) and B/S0 mesons were assumed to be 0.39 and 0.12 respectively. Limits are given for the weighted average of the decay rates of the two neutral B mesons.

Three body decay modes. Upper limits at 90% CL.

Four body decay modes. Upper limits at 90% CL.


First measurement of the quark to photon fragmentation function

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Z.Phys.C 69 (1996) 365-378, 1996.
Inspire Record 398193 DOI 10.17182/hepdata.12261

Earlier measurements at LEP of isolated hard photons in hadronic Z decays, attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include hard photon productioninside hadron jets. Events are selected where all particles combine democratically to form hadron jets, one of which contains a photon with a fractional energyz≥0.7. After statistical subtraction of non-prompt photons, the quark-to-photon fragmentation function,D(z), is extracted directly from the measured 2-jet rate. By taking into account the perturbative contributions toD(z) obtained from anO(ααs) QCD calculation, the unknown non-perturbative component ofD(z) is then determined at highz. Provided due account is taken of hadronization effects nearz=1, a good description of the other event topologies is then found.

16 data tables

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

More…

Measurement of the e+ and e- induced charged current cross-sections at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Z.Phys.C 67 (1995) 565-576, 1995.
Inspire Record 395960 DOI 10.17182/hepdata.44972

The cross sections for the charged current processes ${e~{-}p}\rightarrow{\nu_e+hadrons}$ and, for the first time, ${e~{+}p}\rightarrow{\overline{\nu}_e+hadrons}$ are measured at HERA for transverse momenta larger than 25 GeV.

2 data tables

No description provided.

No description provided.


Search for the decay D0 ---> mu+ mu-

The BEATRICE collaboration Adamovich, M. ; Adinolfi, M. ; Alexandrov, Y. ; et al.
Phys.Lett.B 353 (1995) 563-570, 1995.
Inspire Record 396802 DOI 10.17182/hepdata.47863

We have searched for the decay D 0 → μ + μ − among 1.25 × 10 5 μ + μ − pairs produced by 350 GeV/ c π − particles interacting in copper and tungsten targets. Using a high-resolution silicon-microstrip detector followed by a large-acceptance magnetic spectrometer and a muon filter we are able to discriminate between prompt and non-prompt muons and to measure dimuon masses. No candidate compatible with a D 0 → μ + μ − decay has been found, allowing us to set an upper limit on the branching fraction B( D 0 → μ + μ − ) of 7.6 × 10 −6 at the 90% confidence level.

1 data table

NUCLEUS OF TARGET=CU+WT.


A Study of cascade and strange baryon production in sulphur - sulphur interactions at 200-GeV/c per nucleon

The OMEGA-IONS collaboration Abatzis, S. ; Andersen, E. ; Andrighetto, A. ; et al.
Phys.Lett.B 354 (1995) 178-182, 1995.
Inspire Record 395028 DOI 10.17182/hepdata.47883

Strange and multistrange baryon and antibaryon production has been studied in sulphur sulphur interactions at 200 GeV/ c per nucleon at central rapidity using the CERN Omega Spectrometer. Particle production ratios and transverse mass spectra are presented for Λ, Ξ − , Λ and Ξ − .

8 data tables

No description provided.

No description provided.

No description provided.

More…

A Study of the strong coupling constant using W + jets processes

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 3226-3231, 1995.
Inspire Record 394610 DOI 10.17182/hepdata.42454

The ratio of the number of W+1 jet to W+0 jet events is measured with the D0 detector using data from the 1992–93 Tevatron Collider run. For the W→eν channel with a minimum jet ET cutoff of 25 GeV, the experimental ratio is 0.065±0.003stat±0.007syst. Next-to-leading order QCD predictions for various parton distributions agree well with each other and are all over 1 standard deviation below the measurement. Varying the strong coupling constant αs in both the parton distributions and the partonic cross sections simultaneously does not remove this discrepancy.

1 data table

Two values of ALPHA_S corresponds the two different parton distribution functions (pdf) used in extraction of ALPHA_S from the ratio. The dominant systematic error is from the jet energy scale uncertainty.


B* production in Z decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 68 (1995) 353-362, 1995.
Inspire Record 395026 DOI 10.17182/hepdata.52359

None

2 data tables

No description provided.

No description provided.


Mass dependence of anti-proton production in nucleus nucleus collisions at 3.65-GeV/nucleon

Baldin, A.A. ; Filippov, S.N. ; Gavrilov, Yu.K. ; et al.
Nuovo Cim.A 108 (1995) 139-146, 1995.
Inspire Record 408796 DOI 10.17182/hepdata.37832

Antiproton production cross-sections have been measured for p+C, C+C, C+Cu and C+Pb collisions at 3.65 GeV/nucleon.\(\bar p\) laboratory momentum and angle are 0.8 GeV/c and 24°. The target mass dependence parameter is found to be 0.43±0.1. A strong increase in antiproton yield is observed from p+C, d+C to C+C collisions. Projectile mass parameter is 1.2±0.2 for d+C to C+C. The construction and calibration of APAKI, an annihilation detector for\(\bar p\) identification, are also described.

1 data table

No description provided.


Coupled channel analysis of anti-p p annihilation into pi0 pi0 pi0, pi0 eta eta and pi0 pi0 eta

The Crystal Barrel collaboration Amsler, C. ; Armstrong, D.S. ; Baker, C.A. ; et al.
Phys.Lett.B 355 (1995) 425-432, 1995.
Inspire Record 406130 DOI 10.17182/hepdata.28523

We confirm the existence of the two I G ( J PC ) = 0 + (0 ++ ) resonances f 0 (1370) and f 0 (1500) reported by us in earlier analyses. The analysis presented here couples the final states π 0 π 0 π 0 , π 0 π 0 η and π 0 ηη of p p annihilation at rest. It is based on a 3 × 3 K -matrix. We find masses and widths of M = (1390±30) MeV, Γ = (380±80) MeV; and M = (1500±10) MeV, Γ = (154 ± 30) MeV, respectively. The product branching ratios for the production and decay into π 0 π 0 and ηη of the f 0 (1500) are (1.27 ± 0.33) · 10 −3 and (0.60 ± 0.17) · 10 −3 , respectively.

1 data table

No description provided.


E decay to eta pi pi in anti-p p annihilation at rest

The Crystal Barrel collaboration Amsler, C. ; Armstrong, D.S. ; Baker, C.A. ; et al.
Phys.Lett.B 358 (1995) 389-398, 1995.
Inspire Record 407517 DOI 10.17182/hepdata.28511

We have observed the ηπ + π − and ηπ 0 π 0 decay modes of the E meson in p p annihilation at rest into π + π − π 0 π 0 η . The mass and width of the E meson are 1409 ± 3 and 86 ± 10 MeV. The production and decay branching ratio is B( p p → Eππ)B(E → ηππ) = (3.3 ± 1.0) × 10 −3 . With a spin-parity analysis we determine that J P = 0 − . The observation of the ηπ 0 π 0 decay mode establishes that E is isoscalar ( C = +1). We find that E decays to η ( ππ ) s (where ( ππ ) s is an S-wave dipion) and πa 0 (980)(→ πη ) with a relative branching ratio of (78 ± 16) %. Using the K K π production and decay branching ratio measured earlier we determine that B[E → K K π] B[E → ηππ] = 0.61 ± 0.19 . A comparison with observations in radiative J Ψ decays suggests that E and ι η (1416) are identical.

1 data table

Unobserved channels (E --> ETA 2PI0)2PI0 and (E --> ETA PI+ PI-)PI+PI- was taken into account.