The $J/\psi$ and $\psi(2S)$ charmonium states, composed of $c\bar{c}$ quark pairs and known since the 1970s, are widely believed to serve as ideal probes to test quantum chromodynamics in high-energy hadronic interactions. However, there is not yet a complete understanding of the charmonium-production mechanism. Recent measurements of $J/\psi$ production as a function of event charged-particle multiplicity at the collision energies of both the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) show enhanced $J/\psi$ production yields with increasing multiplicity. One potential explanation for this type of dependence is multiparton interactions (MPI). We carry out the first measurements of self-normalized $J/\psi$ yields and the $\psi(2S)$ to $J/\psi$ ratio at both forward and backward rapidities as a function of self-normalized charged-particle multiplicity in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. In addition, detailed {\sc pythia} studies tuned to RHIC energies were performed to investigate the MPI impacts. We find that the PHENIX data at RHIC are consistent with recent LHC measurements and can only be described by {\sc pythia} calculations that include MPI effects. The forward and backward $\psi(2S)$ to $J/\psi$ ratio, which serves as a unique and powerful approach to study final-state effects on charmonium production, is found to be less dependent on the charged-particle multiplicity.
Self-normalized $J/\psi$ yields as a function of self-normalized $N_{ch}$ for the same arm before subtraction
Self-normalized $J/\psi$ yields as a function of self-normalized $N_{ch}$ for the same arm after subtraction
Self-normalized $J/\psi$ yields as a function of self-normalized $N_{ch}$ for opposite arms
A search for neutral long-lived particles (LLPs) decaying in the ATLAS hadronic calorimeter using 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV delivered by the LHC is presented. The analysis is composed of three channels. The first targets pair-produced LLPs, where at least one LLP is produced with sufficiently low boost that its decay products can be resolved as separate jets. The second and third channels target LLPs respectively produced in association with a $W$ or $Z$ boson that decays leptonically. In each channel, different search regions target different kinematic regimes, to cover a broad range of LLP mass hypotheses and models. No excesses of events relative to the background predictions are observed. Higgs boson branching fractions to pairs of hadronically decaying neutral LLPs larger than 1% are excluded at 95% confidence level for proper decay lengths in the range of 30 cm to 4.5 m depending on the LLP mass, a factor of three improvement on previous searches in the hadronic calorimeter. The production of long-lived dark photons in association with a $Z$ boson with cross-sections above 0.1 pb is excluded for dark photon mean proper decay lengths in the range of 20 cm to 50 m, improving previous ATLAS results by an order of magnitude. Finally, long-lived photo-phobic axion-like particle models are probed for the first time by ATLAS, with production cross-sections above 0.1 pb excluded in the 0.1 mm to 10 m range.
Observed (solid line) and expected (dashed line) upper limits at the 95% CL on the cross-section times branching fraction as a function of cτ for a selection of HS signal models in the CalR+2J channel for HS models with mediator masses of (a) 125 GeV, (b) 600 GeV and (c) 1000 GeV.
Observed (solid line) and expected (dashed line) upper limits at the 95% CL on the cross-section times branching fraction as a function of cτ for a selection of HS signal models in the CalR+2J channel for HS models with mediator masses of (a) 125 GeV, (b) 600 GeV and (c) 1000 GeV.
Observed (solid line) and expected (dashed line) upper limits at the 95% CL on the cross-section times branching fraction as a function of cτ for a selection of HS signal models in the CalR+2J channel for HS models with mediator masses of (a) 125 GeV, (b) 600 GeV and (c) 1000 GeV.
This paper presents a search for exotic decays of the Higgs boson into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one pseudoscalar decays into a $b$-quark pair and the other decays into a $\tau$-lepton pair, in the mass range $12\leq m_{a}\leq 60$ GeV. The analysis uses $pp$ collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 ${fb}^{-1}$. No significant excess above the Standard Model (SM) prediction is observed. Assuming the SM Higgs boson production cross-section, the search sets upper limits at 95% confidence level on the branching ratio of Higgs bosons decaying into $b\bar{b}\tau^+\tau^-$, $\mathcal{B}(H \rightarrow aa \rightarrow b\bar{b}\tau^+\tau^-)$, between 2.2% and 3.9% depending on the pseudoscalar mass.
Visible mass $m^{\mathrm{vis}}(\mu\tau_{\mathrm{had}})$ and distribution for signal and the expected background. In order to compare the shapes, the expected signal distribution is shown assuming ten times the production cross section of the Higgs boson and a 100% branching ratio to $b\bar{b}\tau^+\tau^-$. Overflow events are included in the last bins.
Sum of the transverse mass $\Sigma m_T$ distributions for signal and the expected background. Events with high $m^{\mathrm{vis}}(\mu\tau_{\mathrm{had}})$ and high $\Sigma m_T$ are included in the $t\bar{t}$ region. In order to compare the shapes, the expected signal distribution is shown assuming ten times the production cross section of the Higgs boson and a 100% branching ratio to $b\bar{b}\tau^+\tau^-$. Overflow events are included in the last bins.
The pNN input variable visible mass $m^{\mathrm{vis}}(\mu\tau_{\mathrm{had}})$ is shown in the SR with no cut on the pNN discriminant. The signal shape is normalized to the same integral as the total background prediction. Overflow events are included in the last bins.
This Letter presents results from a combination of searches for Higgs boson pair production using 126$-$140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.4 assuming no Higgs boson pair production. Constraints on the Higgs boson self-coupling modifier $\kappa_{\lambda}=\lambda_{HHH}/\lambda_{HHH}^\mathrm{SM}$, and the quartic $HHVV$ coupling modifier $\kappa_{2V}=g_{HHVV}/g_{HHVV}^\mathrm{SM}$, are derived individually, fixing the other parameter to its SM value. The observed 95% CL intervals are $-1.2 < \kappa_{\lambda} < 7.2$ and $0.6 < \kappa_{2V} < 1.5$, respectively, while the expected intervals are $-1.6 < \kappa_{\lambda} < 7.2$ and $0.4 < \kappa_{2V} < 1.6$ in the SM case. Constraints obtained for several interaction parameters within Higgs effective field theory are the strongest to date, offering insights into potential deviations from SM predictions.
Observed and expected 95% CL upper limits on the signal strength for inclusive ggF HH and VBF HH production from the bb̄τ<sup>+</sup>τ<sup>-</sup>, bb̄γγ, bb̄bb̄, multilepton and bb̄ℓℓ+E<sub>T</sub><sup>miss</sup> decay channels, and their statistical combination. The predicted SM cross-section assumes m<sub>H</sub> = 125 GeV. The expected limit, along with its associated ±1σ and ±2σ bands, is calculated for the assumption of no HH production and with all NPs profiled to the observed data.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}b\bar{b}$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}\tau\tau$.
Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in 140 fb$^{-1}$ of proton--proton collisions with $\sqrt{s}=13$ TeV center-of-mass energy, recorded with the ATLAS detector at CERN's Large Hadron Collider. Observables that are sensitive the energy-scale and angular distribution of radiation due to the strong interaction in the final state are measured double-differentially, in bins of jet multiplicity, and are unfolded to account for acceptance and detector-related effects. Additionally, the scalar sum of the two leading jets' transverse momenta is measured triple-differentially, in bins of the third jet's transverse momentum as well as bins of jet multiplicity. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling $\alpha_{\textrm S}$ while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work, and are documented herein.
R32 for $H_{T2}$, 60 GeV < $p_{T,3}$
R32 for $H_{T2}$, 0.05 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$
A search for the non-resonant production of Higgs boson pairs in the $HH\rightarrow b\bar{b}\tau^+\tau^-$ channel is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $13$ TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimised to probe anomalous values of the Higgs boson self-coupling modifier $\kappa_\lambda$ and of the quartic $HHVV$ ($V = W,Z$) coupling modifier $\kappa_{2V}$. No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limit $\mu_{HH}<5.9$$(3.3)$ is set at 95% confidence-level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of $-3.1 < \kappa_\lambda < 9.0$ ($-2.5 < \kappa_\lambda < 9.3$) and $-0.5 < \kappa_{2V} < 2.7$ ($-0.2 < \kappa_{2V} < 2.4$), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross-sections assuming different kinematic benchmark scenarios.
Observed (filled circles) and expected (open circles) 95% CL upper limits on $\mu_{HH}$ from the fit of each individual channel and the combined fit in the background-only ($\mu_{HH} = 0$) hypothesis. The dashed lines indicate the expected 95% CL upper limits on $\mu_{HH}$ in the SM hypothesis ($\mu_{HH} = 1$). The inner and outer bands indicate the $\pm 1\sigma$ and $\pm 2\sigma$ variations, respectively, on the expected limit with respect to the background-only hypothesis due to statistical and systematic uncertainties.
Observed and expected 95% CL upper limits on $\mu_{HH}$, $\mu_{ggF}$ and $\mu_{VBF}$ from the individual SR likelihood fits as well as the combined results. The $\mu_{ggF}$ and $\mu_{VBF}$ limits are quoted both from the results of the simultaneous fit of both signal strengths (central column), and from independent fits for the individual production modes, assuming the other to be as predicted by the SM. The uncertainties quoted on the combined expected upper limits correspond to the 1σ uncertainty band.
Observed (solid line) value of $-2\ln\Lambda$ as a function of $\kappa_{\lambda}$ for the combined fit, when all other coupling modifiers are fixed to their SM predictions.
A search is presented for flavour-changing neutral-current interactions involving the top quark, the Higgs boson and an up-type quark ($q=u,c$) with the ATLAS detector at the Large Hadron Collider. The analysis considers leptonic decays of the top quark along with Higgs boson decays into two $W$ bosons, two $Z$ bosons or a $\tau^{+}\tau^{-}$ pair. It focuses on final states containing either two leptons (electrons or muons) of the same charge or three leptons. The considered processes are $t\bar{t}$ and $Ht$ production. For the $t\bar{t}$ production, one top quark decays via $t\to Hq$. The proton-proton collision data set analysed amounts to 140 fb$^{-1}$ at $\sqrt{s}=13$ TeV. No significant excess beyond Standard Model expectations is observed and upper limits are set on the $t\to Hq$ branching ratios at 95% confidence level, amounting to observed (expected) limits of $\mathcal{B}(t\to Hu)<2.8\,(3.0) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.3\,(3.8) \times 10^{-4}$. Combining this search with other searches for $tHq$ flavour-changing neutral-current interactions previously conducted by ATLAS, considering $H\to b\bar{b}$ and $H\to\gamma\gamma$ decays, as well as $H\to\tau^{+}\tau^{-}$ decays with one or two hadronically decaying $\tau$-leptons, yields observed (expected) upper limits on the branching ratios of $\mathcal{B}(t\to Hu)<2.6\,(1.8) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.4\,(2.3) \times 10^{-4}$.
Pre-fit background composition of the SR$2\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$2\ell$ Prod. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$3\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$- or $c$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one $b$-jet, at least one $c$-jet, or at least two $b$-jets with transverse momentum $p_\textrm{T} > 20$ GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected $Z + \ge 1 c$-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions.
Figure 6(left) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 6(right) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 2 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 7 of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ c-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Inclusive and differential cross-sections are measured at particle level for the associated production of a top quark pair and a photon ($t\bar{t}\gamma$). The analysis is performed using an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV collected by the ATLAS detector. The measurements are performed in the single-lepton and dilepton top quark pair decay channels focusing on $t\bar{t}\gamma$ topologies where the photon is radiated from an initial-state parton or one of the top quarks. The absolute and normalised differential cross-sections are measured for several variables characterising the photon, lepton and jet kinematics as well as the angular separation between those objects. The observables are found to be in good agreement with the Monte Carlo predictions. The photon transverse momentum differential distribution is used to set limits on effective field theory parameters related to the electroweak dipole moments of the top quark. The combined limits using the photon and the $Z$ boson transverse momentum measured in $t\bar{t}$ production in associations with a $Z$ boson are also set.
All the entries of this HEP data record are listed. Figure and Table numbers are the same as in the paper.
Measured $t\bar{t}\gamma$ production fiducial inclusive cross-sections in both decay channels and in the combination.
Summary of the impact of the systematic uncertainties on the $t\bar{t}\gamma$ production fiducial inclusive cross-section in the single-lepton and dilepton channels and their combination grouped into different categories. The quoted relative uncertainties are obtained by repeating the fit, fixing a set of nuisance parameters of the sources corresponding to each category to their post-fit values, and subtracting in quadrature the resulting uncertainty from the total uncertainty of the nominal fit. The total uncertainty is different from the sum in quadrature of the components due to correlations among nuisance parameters.
Measurements of inclusive, differential cross-sections for the production of events with missing transverse momentum in association with jets in proton-proton collisions at $\sqrt{s}=13~$TeV are presented. The measurements are made with the ATLAS detector using an integrated luminosity of $140~$fb$^{-1}$ and include measurements of dijet distributions in a region in which vector-boson fusion processes are enhanced. They are unfolded to correct for detector resolution and efficiency within the fiducial acceptance, and are designed to allow robust comparisons with a wide range of theoretical predictions. A measurement of differential cross sections for the $Z~\to \nu\nu$ process is made. The measurements are generally well-described by Standard Model predictions except for the dijet invariant mass distribution. Auxiliary measurements of the hadronic system recoiling against isolated leptons, and photons, are also made in the same phase space. Ratios between the measured distributions are then derived, to take advantage of cancellations in modelling effects and some of the major systematic uncertainties. These measurements are sensitive to new phenomena, and provide a mechanism to easily set constraints on phenomenological models. To illustrate the robustness of the approach, these ratios are compared with two common Dark Matter models, where the constraints derived from the measurement are comparable to those set by dedicated detector-level searches.
The measured $p_\text{T}^\text{miss}$ differential cross-sections in the $p_\text{T}^\text{miss}+\text{jets}$ region of the incluse jet phase space, compared with the SM predictions. The middle panels show the ratios of the predictions to the data, along with their uncertainties, while the lower panels show the relative contributions from different SM processes relative to the total MEPS@NLO prediction. Note that individually numbered PDF components ('dK_PDF_') in the uncertainty breakdown correspond to NNPDF Hessian eigenvectors. Uncertainty components labeled 'VV_dK' include Vjj processes.
The measured $p_\text{T}^\text{recoil}$ differential cross-sections in the $1\mu+\text{jets}$ region of the incluse jet phase space, compared with the SM predictions. The middle panels show the ratios of the predictions to the data, along with their uncertainties, while the lower panels show the relative contributions from different SM processes relative to the total MEPS@NLO prediction. Note that individually numbered PDF components ('dK_PDF_') in the uncertainty breakdown correspond to NNPDF Hessian eigenvectors. Uncertainty components labeled 'VV_dK' include Vjj processes.
The measured $p_\text{T}^\text{recoil}$ differential cross-sections in the $1e+\text{jets}$ region of the incluse jet phase space, compared with the SM predictions. The middle panels show the ratios of the predictions to the data, along with their uncertainties, while the lower panels show the relative contributions from different SM processes relative to the total MEPS@NLO prediction. Note that individually numbered PDF components ('dK_PDF_') in the uncertainty breakdown correspond to NNPDF Hessian eigenvectors. Uncertainty components labeled 'VV_dK' include Vjj processes.