Showing 2 of 2 results
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider (LHC) are reported. The search is based on proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 8$ TeV collected in 2012, corresponding to an integrated luminosity of 20 fb$^{-1}$. No significant excess above the Standard Model expectation is observed. Limits are set on the parameters of a minimal universal extra dimensions model, excluding a compactification radius of $1/R_c=950$ GeV for a cut-off scale times radius ($\Lambda R_c$) of approximately 30, as well as on sparticle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet inclusive signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}$ distribution in soft dimuon signal region. The last bin includes the overflow.
Observed and expected $m_{eff}^{incl}$ distribution in hard single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $m_{eff}^{incl}$ distribution for hard single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_{T}^{miss}$ distribution for hard single-lepton 6-jet signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard same-flavour dilepton low-multiplicity signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard same-flavour dilepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard opposite-flavour dilepton low-multiplicity signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard opposite-flavour dilepton 3-jet opposite-flavour signal region. The last bin includes the overflow.
Observed 95% exclusion contour for the mSUGRA/CMSSM model with $\tan\beta=30$, $A_{0}=-2m_{0}$ and $\mu > 0$.
Expected 95% exclusion contour for the mSUGRA/CMSSM model with $\tan\beta=30$, $A_{0}=-2m_{0}$ and $\mu > 0$.
Observed 95% exclusion contour for the bRPV MSUGRA/CMSSM model.
Expected 95% exclusion contour for the bRPV MSUGRA/CMSSM model.
Observed 95% exclusion contour for the natural gauge mediation with a stau NLSP model (nGM).
Expected 95% exclusion contour for the natural gauge mediation with a stau NLSP model (nGM).
Observed 95% exclusion contour for the non-universal higgs masses with gaugino mediation model (NUHMG).
Expected 95% exclusion contour for the non-universal higgs masses with gaugino mediation model (NUHMG).
Observed 95% exclusion contour for the minimal UED model from the combination of the hard dilepton and soft dilepton analyses.
Expected 95% exclusion contour for the minimal UED model from the combination of the hard dilepton and soft dilepton analyses.
Observed 95% exclusion contour for the minimal UED model from the hard dilepton analysis.
Expected 95% exclusion contour for the minimal UED model from the hard dilepton analysis.
Observed 95% exclusion contour for the minimal UED model from the soft dilepton analysis.
Expected 95% exclusion contour for the minimal UED model from the soft dilepton analysis.
Observed 95% exclusion contour for the simplified model with gluino-mediated top squark production where the top squark is assumed to decay exclusively via $\tilde{t} \rightarrow c \tilde{\chi}^{0}_{1}$.
Expected 95% exclusion contour for the simplified model with gluino-mediated top squark production, where the top squark is assumed to decay exclusively via $\tilde{t} \rightarrow c \tilde{\chi}^{0}_{1}$.
Observed 95% exclusion contour for the simplified model with gluino-mediated top squark production where the gluinos are assumed to decay exclusively through a virtual top squark, $\tilde{g} \rightarrow tt+\tilde{\chi}^{0}_{1}$.
Expected 95% exclusion contour for the simplified model with gluino-mediated top squark production where the gluinos are assumed to decay exclusively through a virtual top squark, $\tilde{g} \rightarrow tt+\tilde{\chi}^{0}_{1}$.
Observed 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the soft single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the soft single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the hard single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the hard single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the soft single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the soft single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the gluino simplified model from the hard single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the hard single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the gluino simplified model from the soft single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the soft single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the combination of soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the soft single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the soft single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the combination of the hard dilepton and hard single-lepton analyses.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the combination of the hard dilepton and hard single-lepton analyses.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard single-lepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard single-lepton analysis.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard dilepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard dilepton analysis.
Observed 95% exclusion contour for the two-step first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Expected 95% exclusion contour for the two-step first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Observed 95% exclusion contour for the two-step gluino simplified model without sleptons from the hard single-lepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model without sleptons from the hard single-lepton analysis.
Number of generated events in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Production cross-section in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Number of generated events in the the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV. squark decaying to quark neutralino1 with varying x.
Production cross-section in the the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Number of generated evens in the minimal UED model.
Production cross-section in the minimal UED model in pb.
Number of generated events in the two-step first- and second-generation squark simplified model with sleptons.
Production cross-section in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for soft single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for soft single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for soft single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for soft single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for soft single-lepton 3-jet inclusive signal region in the gluino simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for the soft single-lepton 3-jet inclusive signal region in the gluino simplified model for the case in x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is varied and the LSP mass is set at 60 GeV. The chargino mass is parameterised using x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)).
Observed CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is varied and the LSP mass is set at 60 GeV. The chargino mass is parameterised using x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)).
Acceptance for soft dimuon signal region in the minimal UED model (mUED).
Efficiency for soft dimuon signal region in minimal UED model (mUED).
Acceptance for hard dilepton 3-jet opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton 3jet opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton 3-jet same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton 3-jet same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton low-multiplicity opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton low-multiplicity opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton low-multiplicity same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton low-multiplicity same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Best expected signal region in the minimal UED model (mUED).
Expected CLs from hard dilepton analysis in the two-step first- and second-generation squark simplified model with sleptons.
Observed CLs from the hard dilepton analysis in the two-step first- and second-generation squark simplified model with sleptons.
Expected CLs from the combination of the soft dimuon and hard dilepton analyses in the minimal UED model (mUED).
Observed CLs from the combination of the soft dimuon and hard dilepton analyses in the minimal UED model (mUED).
Acceptance for hard single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 6-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 6-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 3-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 3-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Acceptance for hard single-lepton 5-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 5-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Acceptance for hard single-lepton 6-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 6-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% upper limit on the visible cross-section in the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% upper limit on the visible cross-section in the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% upper limit on the visible cross-section in the first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Observed 95% upper limit on the visible cross-section in the minimal UED model (mUED) from the combination of the soft dimuon and hard dilepton analyses.
A search for squarks and gluinos in final states containing high-$p_{\rm T}$ jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in $\sqrt{s}=8$ TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of $20.3 \mathrm{fb}^{-1}$. No significant excess above the Standard Model expectation is observed. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with $\tan\beta=30$, $A_0=-2m_0$ and $\mu> 0$, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.
The effective mass distribution in 2-jet loose signal region.
The effective mass distribution in 2-jet medium and tight signal regions.
The effective mass distribution in 2-jet (W) signal region.
The effective mass distribution in 3-jet signal region.
The effective mass distribution in 4-jet (W) signal region.
The effective mass distribution in 4-jet very-loose and loose signal regions.
The effective mass distribution in 4-jet medium signal region.
The effective mass distribution in 4-jet tight signal region.
The effective mass distribution in 5-jet signal region.
The effective mass distribution in 6-jet loose and medium signal regions.
The effective mass distribution in 6-jet tight signal region.
The effective mass distribution in 6-jet very-tight signal region.
Observed limit 95% CL.
Expected limit 95% CL.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Expected limit 95% CL -1 sigma.
Observed limit 95% CL.
Expected limit 95% CL.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Expected limit 95% CL -1 sigma.
Observed limit 95% CL (m_chi^0_1=0GeV).
Expected limit 95% CL (m_chi^0_1=0GeV).
Observed limit 95% CL +1 sigma (m_chi^0_1=0GeV).
Observed limit 95% CL -1 sigma (m_chi^0_1=0GeV).
Expected limit 95% CL +1 sigma (m_chi^0_1=0GeV).
Expected limit 95% CL -1 sigma (m_chi^0_1=0GeV).
Observed limit 95% CL (m_chi^0_1=395GeV).
Expected limit 95% CL (m_chi^0_1=395GeV).
Observed limit 95% CL (m_chi^0_1=695GeV).
Expected limit 95% CL (m_chi^0_1=695GeV).
Expected limit 95% CL.
Expected limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL.
Expected limit 95% CL.
Expected limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL.
Expected limit 95% CL.
Expected limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL.
Observed CLs contour for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed CLs contour with plus 1-sigma signal cross-section uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed CLs contour with minus 1-sigma signal cross-section uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Expected CLs contour for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Expected CLs contour with plus 1-sigma experimental uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Expected CLs contour with minus 1-sigma experimental uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed CLs contour for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed CLs contour with plus 1-sigma signal cross-section uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed CLs contour with minus 1-sigma signal cross-section uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Expected CLs contour for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Expected CLs contour with plus 1-sigma experimental uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Expected CLs contour with minus 1-sigma experimental uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed CLs contour for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Observed CLs contour with plus 1-sigma signal cross-section uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Observed CLs contour with minus 1-sigma signal cross-section uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Expected CLs contour for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Expected CLs contour with plus 1-sigma experimental uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
First of two expected CLs contours with minus 1-sigma experimental uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Second of two expected CLs contours with minus 1-sigma experimental uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Observed CLs contour for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Observed CLs contour with plus 1-sigma signal cross-section uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Observed CLs contour with minus 1-sigma signal cross-section uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Expected CLs contour for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Expected CLs contour with plus 1-sigma experimental uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Expected CLs contour with minus 1-sigma experimental uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Expected limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL.
Expected limit 95% CL.
Expected limit 95% CL.
Expected limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL.
Signal region for points.
Signal region for points.
Signal region for points (m_chi^0_1=0GeV).
Signal region for points (m_chi^0_1=395GeV).
Signal region for points (m_chi^0_1=695GeV).
Observed 95% CL cross-section upper limit for pair-produced gluinos decaying directly.
Observed 95% CL cross-section upper limit for associated gluino-squark production.
Observed 95% CL cross-section upper limit for pair-produced squarks decaying directly.
Observed 95% CL cross-section upper limit for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed 95% CL cross-section upper limit for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed 95% CL cross-section upper limit for the pair-produced squarks each decaying via an intermediate chargino1 to quark, a W boson and a neutralino1.
Observed 95% CL cross-section upper limit for the pair-produced squarks each decaying via an intermediate chargino1 to quark, a W boson and a neutralino1.
Signal region for points.
Observed 95% CL cross-section upper limit for pair-produced gluinos decaying via stops into top+charm+neutralino1.
Production cross-section in PB.
Signal acceptance in PCT for SR2jl.
Signal acceptance times reconstruction efficiency in PCT for SR2jl.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jl.
Signal acceptance in PCT for SR2jm.
Signal acceptance times reconstruction efficiency in PCT for SR2jm.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jm.
Signal acceptance in PCT for SR2jt.
Signal acceptance times reconstruction efficiency in PCT for SR2jt.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jt.
Signal acceptance in PCT for SR2jW.
Signal acceptance times reconstruction efficiency in PCT for SR2jW.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jW.
Signal acceptance in PCT for SR3j.
Signal acceptance times reconstruction efficiency in PCT for SR3j.
Uncertainty on signal acceptance times reconstruction efficiency for SR3j.
Signal acceptance in PCT for SR4jW.
Signal acceptance times reconstruction efficiency in PCT for SR4jW.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jW.
Signal acceptance in PCT for SR4jl-.
Signal acceptance times reconstruction efficiency in PCT for SR4jl-.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jl-.
Signal acceptance in PCT for SR4jl.
Signal acceptance times reconstruction efficiency in PCT for SR4jl.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jl.
Signal acceptance in PCT for SR4jm.
Signal acceptance times reconstruction efficiency in PCT for SR4jm.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jm.
Signal acceptance in PCT for SR4jt.
Signal acceptance times reconstruction efficiency in PCT for SR4jt.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jt.
Signal acceptance in PCT for SR5j.
Signal acceptance times reconstruction efficiency in PCT for SR5j.
Uncertainty on signal acceptance times reconstruction efficiency for SR5j.
Signal acceptance in PCT for SR6jl.
Signal acceptance times reconstruction efficiency in PCT for SR6jl.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jl.
Signal acceptance in PCT for SR6jm.
Signal acceptance times reconstruction efficiency in PCT for SR6jm.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jm.
Signal acceptance in PCT for SR6jt.
Signal acceptance times reconstruction efficiency in PCT for SR6jt.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jt.
Signal acceptance in PCT for SR6jt+.
Signal acceptance times reconstruction efficiency in PCT for SR6jt+.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jt+.
Production cross-section in PB.
Signal acceptance in PCT for SR2jl.
Signal acceptance times reconstruction efficiency in PCT for SR2jl.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jl.
Signal acceptance in PCT for SR2jm.
Signal acceptance times reconstruction efficiency in PCT for SR2jm.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jm.
Signal acceptance in PCT for SR2jt.
Signal acceptance times reconstruction efficiency in PCT for SR2jt.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jt.
Signal acceptance in PCT for SR2jW.
Signal acceptance times reconstruction efficiency in PCT for SR2jW.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jW.
Signal acceptance in PCT for SR3j.
Signal acceptance times reconstruction efficiency in PCT for SR3j.
Uncertainty on signal acceptance times reconstruction efficiency for SR3j.
Signal acceptance in PCT for SR4jW.
Signal acceptance times reconstruction efficiency in PCT for SR4jW.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jW.
Signal acceptance in PCT for SR4jl-.
Signal acceptance times reconstruction efficiency in PCT for SR4jl-.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jl-.
Signal acceptance in PCT for SR4jl.
Signal acceptance times reconstruction efficiency in PCT for SR4jl.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jl.
Signal acceptance in PCT for SR4jm.
Signal acceptance times reconstruction efficiency in PCT for SR4jm.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jm.
Signal acceptance in PCT for SR4jt.
Signal acceptance times reconstruction efficiency in PCT for SR4jt.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jt.
Signal acceptance in PCT for SR5j.
Signal acceptance times reconstruction efficiency in PCT for SR5j.
Uncertainty on signal acceptance times reconstruction efficiency for SR5j.
Signal acceptance in PCT for SR6jl.
Signal acceptance times reconstruction efficiency in PCT for SR6jl.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jl.
Signal acceptance in PCT for SR6jm.
Signal acceptance times reconstruction efficiency in PCT for SR6jm.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jm.
Signal acceptance in PCT for SR6jt.
Signal acceptance times reconstruction efficiency in PCT for SR6jt.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jt.
Signal acceptance in PCT for SR6jt+.
Signal acceptance times reconstruction efficiency in PCT for SR6jt+.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jt+.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.