A study of ϕ-meson photoproduction by partially polarized photons of energy 20–40 GeV is reported. The production mechanism is found to conserves-channel helicity and to proceed via natural-parity exchange in thet channel. In the photoproduction of high-massK+K− states with photons of energy 20–70 GeV, there is evidence for an enhancement at a mass of 1.76 GeV with width 0.08 GeV.
No description provided.
No description provided.
No description provided.
The reactionsK−p→π∓Σ(1385)± are studied at an incident laboratory momentum of 8.25 GeV/c using data from a high statistics (≃180 events/μb) bubble chamber experiment. In the case of the reactionK−p→π−Σ(1385)+ an amplitude analysis is performed and the complete Σ(1385)+ spin density matrix is extracted as a function oft′. The results are compared with the predictions of the additive quark model. In the case of the reactionK−p→π+Σ(1385)− the cross-sections for forward and backward production are determined.
No description provided.
No description provided.
No description provided.
We have studied several features of the production of charged-hardon pairs by γγ collisions. We have measured the f0 partial width Γf0→γγ(Q2) for Q2 in the range 0<Q2<1.4 GeV2/c2, and obtained Γf0→γγ=2.52±0.13±0.38 keV at Q2≈0. The measured Q2 dependence is in agreement with the generalized vector-dominance model. The cross section for γγ→(π+π−+K+K−) in the mass region 1.6≤Mππ≤2.5 GeV/c2 has also been measured and the result compared with that expected from the QCD continuum.
Data read from graph.. Both statistical and systematic errors included.
We have measured differential cross sections for both π+p and π−p elastic scattering at incident-pion kinetic energies of 30, 50, 70, and 90 MeV in the center-of-mass angular range between 50° and 150°. The experiment detected pions scattered from a liquid-hydrogen target with multiwire proportional chambers and scintillation-counter range telescopes. The relative accuracy of each angular distribution is better than 5%, while the absolute cross sections have uncertainties of 4% to 25%. Our results for the absolute cross section for π+p scattering at 30 and 90 MeV are inconsistent with previous measurements. Our π−p measurements comprise the first extensive set of precision differential cross sections below 90 MeV.
No description provided.
No description provided.
No description provided.
Using data taken at PETRA we present results on deep inelastic electron photon scattering at momentum transfers 1 < Q 2 < 15 GeV 2 . The results are expressed in terms of the photon structure function F 2 and are compared with QCD predictions and “hadronic” models of the photon. The pointlike component of the photon is found to be dominant.
Data read from graph.. Data for W < 3.5 in Berger et al. 1981, PL 99B,287 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1164> RED = 1164 </a>).
PHOTON STRUCTURE FUNCTION. NUMERICAL VALUES OF DATA ON FIGURE SUPPLIED BY W. WAGNER.
The differential and channel cross sections have been measured for the reactions K L 0 p → K S 0 p and K L 0 p → Λ 0 π + in nine energy intervals in the c.m. range 1605 to 1910 MeV. The regeneration reaction is a combination of the KN amplitudes (with I = 0 and 1) and the K N amplitude ( I = 1) and is very sensitive to the various KN phase-shift solutions, some of which show an exotic I = 0, P 1 resonance. Our results have been expressed in terms of frequency distributions and cross sections, normalised by the Λ 0 π + reaction. These results have been compared with the predictions of various partial-wave analyses. Qualitatively we can eliminate the P 1 non-resonant solution, though no solution correctly predicts our results.
No description provided.
No description provided.
No description provided.
We have measured the backward differential cross section in π−p elastic scattering at 31 momenta from 1.28 to 3.0 GeV/c. These measurements covered the center-of-mass angular range of 125°-178° corresponding to −0.570≲cosθc.m.≲−0.999. Considerable structure in the angular distribution is found. We compare these data with data from other experimets and to predictions made by the latest phase-shift solution. We find, in general, good agreement with other data in the few regions of overlap. The fits from the phase-shift solution do not accurately reproduce these data at low momenta below 1.9 GeV/c but give excellent agreement above this momentum.
No description provided.
No description provided.
No description provided.
Qausi-elastic ω production by ep scattering in the kinematic region 0.3. < Q 2 < 1.4 GeV 2 and 1.7 < W < 2.8 GeV was studied using a streamer chamber at DESY. The production angular distribution for γ V p → ω p has a strong non-peripheral component for W < 2 GeV. The ω production cross section falls by a factor of 4 as W changes from 1.7 to 2.8 GeV. In contrast the cross section for ω production with | t | < 0.5 GeV 2 is W independent between 1.7 and 2.8 GeV and for W > 2.0 GeV consistent in both W and Q 2 dependence with the predictions of a model based on one-pion exchange and diffraction.
FOR ALL T-VALUES. THE GAMMA* P TOTAL CROSS SECTION WAS TAKEN FROM A FIT TO THE DATA OF S. STEIN ET AL., PR D12, 1884 (1975). 'PPD'.
'PPD'. PERIPHERAL OMEGA PRODUCTION.
No description provided.
As part of a program of measurements of the πp system we have measured the backward differential cross section for π+p elastic scattering at 16 momenta from 1.25 to 2.0 GeV/c inclusive. The angular region covered is -0.46 to -0.97 in cosθc.m.. The high resolution in u of 0.03 to 0.04 (GeV/c)2, together with good statistics, enables a detailed examination of the momentum and angular dependence of structure in this channel. The data are compared with distributions from other experiments and with the most recent phaseshift fit.
No description provided.
No description provided.
No description provided.
The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.
DIPION CHANNEL CROSS SECTION.
THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).
No description provided.