A study of the inclusive polarization of Λ hyperons produced by 400-GeV/c protons incident on nuclear targets has been performed at Fermilab. The polarization P of the Λ has been mapped over a large range of xF and pT to good precision for pT up to 3.8 GeV/c. The magnitude of the polarization at fixed xF rises with pT to a plateau at about 1 GeV/c, and the size of the plateau increases monotonically with xF. The Λ¯ were found to be unpolarized for pT<2.4 GeV/c. A target-nucleus dependence for the Λ polarization has been observed.
No description provided.
No description provided.
No description provided.
Measurements of inclusive transverse-momentum spectra for KS0 mesons produced in proton-antiproton collisions at s of 630 and 1800 GeV are presented and compared with data taken at lower energies. The ratio, as a function of pT, of the cross section for KS0 to that for charged hadrons is very similar to what is observed at lower energies. At 1800 GeV, we calculate the strangeness-suppression factor λ=0.40±0.05.
Estimated effective cross sections for events which pass the trigger and selection criteria. The uncertainties in these represent the principal source of error in the overall normalisation of the results.
Statistical errors only.
Statistical errors only.
A study of the lateral development of jets of hadrons produced in electron-positron annihilation has been used to determine the strong coupling constant αs. Data were obtained with the MAC detector at the SLAC e+e− storage ring PEP at s=29 GeV. Based on the parton calculations of Gottschalk and Shatz, a value for αs of 0.133±0.005(stat)±0.009(syst) has been determined for string fragmentation, and 0.112±0.008(stat)±0.007(syst) for an independent-jet model.
JET FRACTION MEASURED. FIT ACCORDING TO:. T.D. GOTTSCHALK AND M.P.SCHATZ CALT-68-1172 (1985).
JET FRACTION MEASURED. FIT ACCORDING TO INDEPENTENT JET MODEL.
Scaled factorial moments, corrected for the shape of the single-particle pseudorapidity distribution, are analyzed in pseudorapidity and in two-dimensional (pseudorapidity and azimuth angle) space. An intermittent, power-law growth of the moments with decreasing bin size is found, with two-dimensional analysis revealing a much stronger effect than for one-dimensional for nucleus-nucleus data. The intermittent patterns are more evident for proton-nucleus than for nucleus-nucleus collisions, with the heaviest nucleus, S32, showing the weakest effect.
SEMICENTRAL EVENTS.
Correlations between target fragments were measured in α- and 14 N-induced reactions at 70, 250 and 800 MeV/u incident energies. The reaction mechanism is characterized by the linear momentum transfer and the excitation energy which were deduced from the kinematics and the mass distribution of the fission fragments. By selecting targets lighter than Th (Au and Ho) the yield from peripheral collisions is reduced by the increase in the fission barrier thus allowing events with the highest linear momentum transfer and excitation energy to be favoured. The results show that up to an incident energy of 800 MeV/u hot nuclei are formed which decay via normal binary fission. The linear momentum transfer is essentially constant over the covered energy range, but the excitation energy increases until the total incident energy is greater than 3 GeV. At this energy, independent of the projectile mass the fission probability of the heavy nuclei drops below 50%, while the emission of intermediate-mass fragments increases. The relative velocities between two intermediate-mass fragments exceed strongly the values of binary fission. Monte Carlo calculations show that the relative velocities between these fragments exclude a sequential emission from the recoil nucleus and support a simultaneous breakup mechanism.
SIG IS FISSION CROSS-SECTION CALCULATED WITH THE SOFT-SPHERE MODEL OF REF. PHYS.REV.C11 (1975) 1203.
SIG IS FISSION CROSS-SECTION CALCULATED WITH THE SOFT-SPHERE MODEL OF REF. PHYS.REV.C11 (1975) 1203.
SIG IS FISSION CROSS-SECTION CALCULATED WITH THE SOFT-SPHERE MODEL OF REF. PHYS.REV.C11 (1975) 1203.
We have measured the asymmetry of elastic pp scattering at small scattering angles (30–100 mrad) in the Coulomb-nuclear interference region, using the polarized proton beam of Saturne II, a segmented scintillator active target, and two telescopes of multiwire proportional chambers. Results are given at four energies — 940, 1000, 1320 and 2440 MeV-and are compared with phase-shift calculations.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The reaction pp→p f (K + K − K + K − )p s in which the K + K − K + K − system is centrally produced has been studied at 300 GeV/ c . φφ production has been observed and the ratio σ (φK + K − )/ σ ( φφ ) is 1.0±0.3. The cross section for central production of φφ is found to be the same at 300 GeV/ c and 85 GeV/ c . An angular analysis of the φφ system favours J P =2 + over 0 − .
No description provided.
The total cross section for e + e − annihilation into hadrons has been measured for CM energies ranging from 50 to 57 GeV. We fit the predictions of the standard model to these measurements and those at lower energies. The mass of the Z 0 boson, M Z , and the QCD scale parameter, Λ MS , are derived from the fit. The results are M Z =88.6 −1.8 +2.0 GeV/ c 2 , and Λ MS =0.15 −0.11 +0.16 GeV .
No description provided.
Results are presented of an analysis of the reaction pp→p f (K S 0 K ± π ∓ )p s at 300 GeV/ c . Clear f 1 (1285) and f 1 (1420) signals are seen. A spin-parity analysis shows that both are consistent with being 1 ++ states. The f 1 (1420) is found to decay only to K ∗ K and no 0 −+ or 1 +− waves are required to describe the data. The production of the f 1 (1285) as a function of energy is not the same as that for the f 1 (1420) whose cross section is found to be constant with energy.
No description provided.