Measurement of the inclusive jet cross section in pp collisions at sqrt(s)=2.76 TeV and comparison to the inclusive jet cross section at sqrt(s)=7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 73 (2013) 2509, 2013.
Inspire Record 1228693 DOI 10.17182/hepdata.61627

The inclusive jet cross-section has been measured in proton-proton collisions at sqrt(s)=2.76 TeV in a dataset corresponding to an integrated luminosity of 0.20pb-1 collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-kt algorithm with two radius parameters of 0.4 and 0.6. The inclusive jet double-differential cross-section is presented as a function of the jet transverse momentum pT and jet rapidity y, covering a range of 20 <= pT < 430 GeV and |y| < 4.4. The ratio of the cross-section to the inclusive jet cross-section measurement at sqrt(s)=7 TeV, published by the ATLAS Collaboration, is calculated as a function of both transverse momentum and the dimensionless quantity xT = 2 pT / sqrt(s), in bins of jet rapidity. The systematic uncertainties on the ratios are significantly reduced due to the cancellation of correlated uncertainties in the two measurements. Results are compared to the prediction from next-to-leading order perturbative QCD calculations corrected for non-perturbative effects, and next-to-leading order Monte Carlo simulation. Furthermore, the ATLAS jet cross-section measurements at sqrt(s)=2.76 TeV and sqrt(s)=7 TeV are analysed within a framework of next-to-leading order perturbative QCD calculations to determine parton distribution functions of the proton, taking into account the correlations between the measurements.

1 data table match query

The measured ratio of inclusive jet cross sections at sqrt(s)=2.76 TeV to the one at sqrt(s)=7 TeV in the rapidity bin |y| < 0.3 for anti-kt jets with R = 0.6 as a function of the jet XT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.


Centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 748 (2015) 392-413, 2015.
Inspire Record 1334140 DOI 10.17182/hepdata.67349

Measurements of the centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead ($p$+Pb) collisions and the jet cross-section in $\sqrt{s} = 2.76$ TeV proton--proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb$^{-1}$ and 4.0 pb$^{-1}$, respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The $p$+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval $-4.9 < \eta < -3.2$ in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum ($p_\mathrm{T}$) for minimum-bias and centrality-selected $p$+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a $p_\mathrm{T}$-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all $p_\mathrm{T}$ at forward rapidities and for large $p_\mathrm{T}$ at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton-nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton-parton kinematics.

1 data table match query

Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).


Version 2
Measurement of charged-particle spectra in Pb+Pb collisions at $\sqrt{{s}_\mathsf{{NN}}} = 2.76$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2015) 050, 2015.
Inspire Record 1360290 DOI 10.17182/hepdata.67531

Charged-particle spectra obtained in 0.15 nb${}^{-1}$ of Pb+Pb interactions at $\sqrt{{s}_\mathsf{{NN}}}=2.76$TeV and 4.2 pb${}^{-1}$ of pp interactions at $\sqrt{s}=2.76$ TeV with the ATLAS detector at the LHC are presented in a wide transverse momentum ($0.5 < p_{\mathrm{T}} < 150$ GeV) and pseudorapidity ($|\eta|<2$) range. For Pb+Pb collisions, the spectra are presented as a function of collision centrality, which is determined by the response of the forward calorimeter located on both sides of the interaction point. The nuclear modification factors $R_{\mathrm{AA}}$ and $R_{\mathrm{CP}}$ are presented in detail as function of centrality, $p_{\mathrm{T}}$ and $\eta$. They show a distinct $p_{\mathrm{T}}$-dependence with a pronounced minimum at about 7 GeV. Above 60 GeV, $R_{\mathrm{AA}}$ is consistent with a plateau at a centrality-dependent value, within the uncertainties. The value is $0.55\pm0.01(stat.)\pm0.04(syst.)$ in the most central collisions. The $R_{\mathrm{AA}}$ distribution is consistent with flat $|\eta|$ dependence over the whole transverse momentum range in all centrality classes.

1 data table match query

Charged-particle spectra in different eta intervals for pp.


Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 739 (2014) 320-342, 2014.
Inspire Record 1300152 DOI 10.17182/hepdata.64272

Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb$^{-1}$. Jets were reconstructed using the anti-$k_{t}$ algorithm with distance parameter values $R$ = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for $R=0.4$ jets with $p_{{T}}^{\mathrm{jet}}> 100$ GeV. Commensurate minimum $p_{\mathrm{T}}$ values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate $z$ values, $0.04 \lesssim z \lesssim 0.2$ and an enhancement in fragment yield for $z \lesssim 0.04$. A smaller, less significant enhancement is observed at large $z$ and large $p_{\mathrm{T}}$ in central collisions.

1 data table match query

D(z) distribution for R=0.2 jets.


Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 114 (2015) 072302, 2015.
Inspire Record 1326911 DOI 10.17182/hepdata.66021

Measurements of inclusive jet production are performed in $pp$ and Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 $\mathrm{pb}^{-1}$ and 0.14 $\mathrm{nb}^{-1}$, respectively. The jets are identified with the anti-$k_t$ algorithm with $R=0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_{\mathrm{T}} < 500$ GeV, and absolute rapidity $|y| < 2.1$ and as a function of collision centrality. The nuclear modification factor, $R_{\mathrm{AA}}$, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to $pp$ collisions. The $R_{\mathrm{AA}}$ shows a slight increase with $p_{\mathrm{T}}$ and no significant variation with rapidity.

1 data table match query

No description provided.


Measurement of Z boson Production in Pb+Pb Collisions at sqrt(s_NN)=2.76 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.Lett. 110 (2013) 022301, 2013.
Inspire Record 1193044 DOI 10.17182/hepdata.60336

The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 inverse nb of integrated luminosity obtained in the 2011 LHC Pb+Pb run at sqrt(s_NN)=2.76 TeV. The Z bosons are reconstructed via di-electron and di-muon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.

0 data tables match query

Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

1 data table match query

Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.


Measurement of charged jet suppression n Pb-Pb collisions at sqrt(sNN)=2.76TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
JHEP 03 (2014) 013, 2014.
Inspire Record 1263194 DOI 10.17182/hepdata.62723

A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV is reported. Jets are reconstructed from charged particles using the anti-$k_{\rm T}$ jet algorithm with jet resolution parameters $R$ of $0.2$ and $0.3$ in pseudo-rapidity $|\eta|<0.5$. The transverse momentum $p_{\rm T}$ of charged particles is measured down to $0.15$ GeV/$c$ which gives access to the low $p_{\rm T}$ fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter $R=0.3$ considered in the analysis. The fragmentation bias introduced by selecting jets with a high $p_{\rm T}$ leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with $R=0.2$ and $R=0.3$ is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with $R<0.3$.

1 data table match query

Nuclear modification factor, constructed as the ratio of jet pT spectra in central and peripheral collisions normalized by the nuclear overlap functions, for charged jets with either R = 0.2 or R = 0.3 and a leading charged particle with pT > 5 GeV. Central collisions are defined to have centrality 10-30% and peripheral collisions are defined to have centrality 50-80%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.


Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

1 data table match query

Charged-hadron spectrum in the centrality interval 10-20% for Xe+Xe, divided by &#9001;TAA&#9002;. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.


A Study of the Energy Dependence of the Underlying Event in Proton-Antiproton Collisions

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 92 (2015) 092009, 2015.
Inspire Record 1388868 DOI 10.17182/hepdata.70787

We study charged particle production in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of eta-phi space; toward, away, and transverse. The average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the underlying event. The transverse region is divided into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

1 data table match query

Average charged particle pT sum for charged particles with pT > 0.5 GeV and |eta| < 0.8 in the TransMIN region as defined by the leading charged particle, as a function of the transverse momentum of the leading charged-particle pTmax, at 300 GeV.