We present a measurement of the Drell-Yan cross section at high dielectron invariant mass using 120/pb of data collected in pbar-p collisions at sqrt(s) = 1.8 TeV by the D0 collaboration during 1992-96. No deviation from standard model expectations is observed. We use the data to set limits on the energy scale of quark-electron compositeness with common constituents. The 95% confidence level lower limits on the compositeness scale vary between 3.3 TeV and 6.1 TeV depending on the assumed form of the effective contact interaction.
Dielectron production cross section.
We present a study of Z +gamma + X production in p-bar p collisions at sqrt{S}=1.8 TeV from 97 (87) pb^{-1} of data collected in the eegamma (mumugamma) decay channel with the D0 detector at Fermilab. The event yield and kinematic characteristics are consistent with the Standard Model predictions. We obtain limits on anomalous ZZgamma and Zgammagamma couplings for form factor scales Lambda = 500 GeV and Lambda = 750 GeV. Combining this analysis with our previous results yields 95% CL limits |h{Z}_{30}| < 0.36, |h{Z}_{40}| < 0.05, |h{gamma}_{30}| < 0.37, and |h{gamma}_{40}| < 0.05 for a form factor scale Lambda=750 GeV.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.
We have studied tbar-t production using multijet final states in pbar-p collisions at a center-of-mass energy of 1.8 TeV, with an integrated luminosity of 110.3 pb(-1). Each of the top quarks with these final states decays exclusively to a bottom quark and a W boson, with the W bosons decaying into quark-antiquark pairs. The analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on the tbar-t production cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/- 1.5(syst.) pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this result with previous D0 measurements, where one or both of the W bosons decay leptonically, gives a tbar t production cross section of 5.9 +/- 1.2(stat) +/- 1.1(syst) pb.
The second value is the combination of the data reported here combined withthe previous result of D0 reported in PRL 79(1997)1203.
We have used 87 pb^-1 of data collected with the Collider Detector at Fermilab to search for new particles decaying to b bbar. We present model-independent upper limits on the cross section for narrow resonances which excludes the color-octet technirho in the mass interval 350 < M < 440 GeV/c^2. In addition, we exclude topgluons, predicted in models of topcolor-assisted technicolor, of width Gamma = 0.3 M in the mass range 280 < M < 670 GeV/c^2, of width Gamma = 0.5 M in the mass range 340 < M < 640 GeV/c^2, and of width Gamma = 0.7 M in the mass range 375 < M < 560 GeV/c^2.
95 PCT C.L. upper limits on the cross section times branching ratio for newparticles decaying to BQ BQBAR as a function of the new particle mass for narrowresonances, and for top-gluons of three different widths (see text of paper).
We present a measurement of Z0 boson and Drell-Yan production cross sections in p¯p collisions at s=1.8TeV using a sample of 107pb−1 accumulated by the Collider Detector at Fermilab. The Drell-Yan cross section is measured in the mass range of Mμμ>40GeV/c2. We compare the measurements with the predictions of quantum chromodynamics in both leading order and next-to-leading order, incorporating the recent parton distribution functions. The measurements are consistent with the standard model expectations.
The mesured Z0 cross sections for the two running periods and combined.
The mesured Z0 cross section, times the branching ratio Z0 --> MU+ MU- (3.362 PCT) for the two running periods and combined.
The mesured production cross section for the combined data sets for ABS(YRAP) < 1.
We present results on dijet production via hard color-singlet exchange in proton-antiproton collisions at root-s = 630 GeV and 1800 GeV using the DZero detector. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, separation in pseudorapidity between the two highest transverse energy jets, and proton-antiproton center-of-mass energy. The results are consistent with a color-singlet fraction that increases with an increasing fraction of quark-initiated processes and inconsistent with two-gluon models for the hard color-singlet.
Colour-singlet fraction at 1.8 TeV.
Ratio of colour-singlet fractions between 630 and 1800 GeV.
We search for Higgs bosons produced in association with a massive vector boson in 91±7pb−1 of pp¯ collisions at s=1.8TeV recorded by the Collider Detector at Fermilab. We assume the Higgs scalar H0 decays to a bb¯ pair with branching ratio β, and we consider the hadronic decays of the vector boson V ( W or Z). Observations are consistent with background expectations. We place 95% confidence level upper limits on σ(pp¯→H0V)β as a function of the scalar mass (MH0) over the range 70
Cross section from the hadronic analysis fit (C=MEASURED) plus 95 PCT confidence upper limits from the hadronic, leptonic and combined analyses.
We have made a precise measurement of the central inclusive jet cross section at sqrt(s) = 1.8 TeV. The measurement is based on an integrated luminosity of 92 pb-1 collected at the Fermilab Tevatron pbar-p Collider with the D-Zero detector. The cross section, reported as a function of jet transverse energy (ET >= 60 GeV) in the pseudorapidity interval |eta| <= 0.5, is in good agreement with predictions from next-to-leading order quantum chromodynamics.
Inclusive cross section for ABS(ETARAP)<0.5. The quoted systematic (DSYS) errors do not include the luminosity uncertainty of 6.1 PCT.
Inclusive cross section for 0.1<=ABS(ETARAP)<=0.7. Data are taken from the AIP E-PAPS ftp site shown above. The quoted (DSYS) errors are the total systematic errors including the luminosity uncertainty.
We report on a search for second generation leptoquarks (Phi_2) using a data sample corresponding to an integrated luminosity of 110 pb^{-1} collected at the Collider Detector at Fermilab. We present upper limits on the production cross section as a function of Phi_2 mass, assuming that the leptoquarks are produced in pairs and decay into a muon and a quark with branching ratio beta. Using a Next-to-Leading order QCD calculation, we extract a lower mass limit of M_{\Phi_2} > 202 (160) GeV$/c^{2} at 95% confidence level for scalar leptoquarks with beta=1(0.5).
Cross section times branching ratios.
Using the DZero detector at the 1.8 TeV pbarp Fermilab Tevatron collider, we have measured the inclusive dijet mass spectrum in the central pseudorapidity region |eta_jet| < 1.0 for dijet masses greater than 200 Gev/c^2. We have also measured the ratio of spectra sigma(|eta_jet| < 0.5)/sigma(0.5 < |eta_jet| < 1.0). The order alpha_s^3 QCD predictions are in good agreement with the data and we rule out models of quark compositeness with a contact interaction scale < 2.4 TeV at the 95% confidence level.
Dijet cross section for ABS(ETARAP)<1.0.
Ratio of cross sections for ABS(ETARAP) < 0.5 / 0.5 < ABS(ETARAP) < 1.0.