The shapes of jets with transverse energies, E_T(jet), up to 45 GeV produced in neutral- and charged-current deep inelastic e+p scattering (DIS) at Q**2 > 100 GeV**2 have been measured with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the eta-phi plane with a cone radius of one unit. The jets become narrower as E_T(jet) increases. The jet shapes in neutral- and charged-current DIS are found to be very similar. The jets in neutral-current DIS are narrower than those in resolved processes in photoproduction and closer to those in direct-photon processes for the same ranges in E_T(jet) and jet pseudorapidity. The jet shapes in DIS are observed to be similar to those in e+e- interactions and narrower than those in pbarp collisions for comparable E_T(jet). Since the jets in e+e- interactions and e+p DIS are predominantly quark initiated in both cases, the similarity in the jet shapes indicates that the pattern of QCD radiation within a quark jet is to a large extent independent of the hard scattering process in these reactions.
Measured differential jet shapes, corrected to the hadron level, in neutral-current DIS for jets with ET greater than 14 GeV in different etarap regions.
Measured differential jet shapes, corrected to the hadron level, in neutral-current DIS for jets with ET greater than 14 GeV in different etarap regions.
Measured differential jet shapes, corrected to the hadron level, in neutral-current DIS for jets with ET greater than 14 GeV in different etarap regions.
An improved measurement of the forward-backward asymmetry in Z →b b ̄ decays is presented, based on a sample of 4.1 million hadronic Z decays collected by ALEPH between 1991 and 1995. Data are analysed as a function of polar angle of the event axis and b purity. The event tagging efficiency and mean b -jet hemisphere charge are measured directly from data. From the measured forward-backward jet charge asymmetry, the b quark asymmetry at s =m Z is determined to be: A b FB =0.1017±0.0038(stat.)±0.0032(syst.). In the context of the Standard Model this corresponds to a value of the effective weak mixing angle of sin 2 θ W eff =0.23109±0.00096.
Only statistical errors are given for sqrt(s) = 89.43 and 92.97 GeV.
The combination of the data on and off peak of Z-boson.
The combination of the data on and off peak of Z-boson.
The production of K^0_S mesons and Lambda baryons in quark and gluon jets has been investigated using two complementary techniques. In the first approach, which provides high statistical accuracy, jets were selected using different jet finding algorithms and ordered according to their energy. Production rates were determined taking into account the dependences of quark and gluon compositions as a function of jet energy as predicted by Monte Carlo models. Selecting three-jet events with the k_perp (Durham) jet finder (y_cut = 0.005), the ratios of K^0_S and Lambda production rates in gluon and quark jets relative to the mean charged particle multiplicity were found to be 1.10 +/- 0.02 +/- 0.02 and 1.41 +/- 0.04 +/- 0.04, respectively, where the first uncertainty is statistical and the second is systematic. In the second approach, a new method of identifying quark jets based on the collimation of energy flow around the jet axis is introduced and was used to anti-tag gluon jets in symmetric (Y-shaped) three-jet events. Using the cone jet finding algorithm with a cone size of 30 degrees, the ratios of relative production rates in gluon and quark jets were determined to be 0.94 +/- 0.07 +/- 0.07 for K^0_S and 1.18 +/- 0.10 +/- 0.17 for Lambda. The results of both analyses are compared to the predictions of Monte Carlo models.
Ratios of relative yields.
Ratios of absolute rates.
CERN experiment WA89 has studied charmed particles produced by a Sigma^- beam at 340 GeV/c on nuclear targets. Production of particles which have light quarks in common with the beam is compared to production of those which do not. Considerable production asymmetries between D^- and D^p, D_s^ and D_s^+ and Lambda_c and Antilambda_c are observed. The results are compared with pion beam data and with theoretical calculations.
The expectation values, and the lower limits, of the measured asymmetries between D+ and D- production. Statistical errors only are presented.
The expectation values, and the lower limits, of the measured asymmetries between D/S+ and D/S- production. Statistical errors only are presented.
The expectation values, and the lower limits, of the measured asymmetries between LAMBDA/C+ and LAMBDA/CBAR- production. Statistical errors only are presented.
The full statistics of hadronic Z decays collected with the ALEPH detector are analysed to measure, by three methods, the ratio, ${\rm R_c}$ , of the partial decay
No description provided.
The ratio of the W+≥1 jet cross section to the inclusive W cross section is measured using W±→e±ν events from p¯p collisions at s=1.8TeV. The data are from 108pb−1 of integrated luminosity collected with the Collider Detector at Fermilab. Measurements of the cross section ratio for jet transverse energy thresholds (ETmin) ranging from 15 to 95 GeV are compared to theoretical predictions using next-to-leading-order QCD calculations. Data and theory agree well for ETmin>25GeV, where the predictions lie within 1 standard deviation of the measured values.
No description provided.
We have measured the differential production cross sections as a function of scaled momentum x_p=2p/E_cm of the identified hadron species pi+, K+, K0, K*0, phi, p, Lambda0, and of the corresponding antihadron species in inclusive hadronic Z0 decays, as well as separately for Z0 decays into light (u, d, s), c and b flavors. Clear flavor dependences are observed, consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results were used to test the QCD predictions of Gribov and Lipatov, the predictions of QCD in the Modified Leading Logarithm Approximation with the ansatz of Local Parton-Hadron Duality, and the predictions of three fragmentation models. Ratios of production of different hadron species were also measured as a function of x_p and were used to study the suppression of strange meson, strange and non-strange baryon, and vector meson production in the jet fragmentation process. The light-flavor results provide improved tests of the above predictions, as they remove the contribution of heavy hadron production and decay from that of the rest of the fragmentation process. In addition we have compared hadron and antihadron production as a function of x_p in light quark (as opposed to antiquark) jets. Differences are observed at high x_p, providing direct evidence that higher-momentum hadrons are more likely to contain a primary quark or antiquark. The differences for pseudoscalar and vector kaons provide new measurements of strangeness suppression for high-x_p fragmentation products.
Charged pion fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Charged kaon fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Proton fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Enhanced production of ΛΛ pairs, above levels predicted by a two-step process model, has been observed near threshold (in the mass range 2.23-2.26 GeV/ c 2 ) in the 12 C( K − , K + ) reaction at 1.66 GeV/ c using a scintillating fiber target. The differential cross section for ΛΛ production in the momentum region 0.95≤ p K + ≤1.3 GeV/ c averaged over the range 2.3 o ≤ θ K + ≤14.7 o was found to be 7.6±1.3 ±0.9 μ b/sr, and that for the enhancement was found to be approximately 3 μ b/sr.
No description provided.
Differential dijet cross sections have been measured with the ZEUS detector for photoproduction events in which the hadronic final state containing the jets is separated with respect to the outgoing proton direction by a large rapidity gap. The cross section has been measured as a function of the fraction of the photon (x_gamma^OBS) and pomeron (beta^OBS) momentum participating in the production of the dijet system. The observed x_gamma^OBS dependence shows evidence for the presence of a resolved- as well as a direct-photon component. The measured cross section d(sigma)/d(beta^OBS) increases as beta^OBS increases indicating that there is a sizeable contribution to dijet production from those events in which a large fraction of the pomeron momentum participates in the hard scattering. These cross sections and the ZEUS measurements of the diffractive structure function can be described by calculations based on parton densities in the pomeron which evolve according to the QCD evolution equations and include a substantial hard momentum component of gluons in the pomeron.
Differential cross section as a function of rapidity of the two highest Et jets in event.
Differential cross section as a function of transverse energy Et of the tw o highest Et jets in event.
Differential cross section as a function of invariant mass of the GAMMA P system.
The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.
The multiplicity moment MULT as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.
The multiplicity moment DISPERSION as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.
The multiplicity moment R2 as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.