Date

Subject_areas

A Study of Bhabha Scattering at {PETRA} Energies

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 37 (1988) 171, 1988.
Inspire Record 249557 DOI 10.17182/hepdata.45173

We report on high statistics Bhabha scattering data taken with the TASSO experiment at PETRA at center of mass energies from 12 GeV to 46.8 GeV. We present an analysis in terms of electroweak parameters of the standard model, give limits on QED cut-off parameters and look for possible signs of compositeness.

2 data tables match query

Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).

Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).


Measurement of radiative Bhabha and quasi-real Compton scattering.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 439 (1998) 183-196, 1998.
Inspire Record 473410 DOI 10.17182/hepdata.49339

We report on a study of radiative Bhabha and quasi-real Compton scattering at centre-of-mass energies between 50 GeV and 170 GeV, and 20 GeV and 140 GeV, respectively, using the L3 detector at LEP. The analysis is based on data corresponding to an integrated luminosity of 232.2 pb −1 . A total of 2856 radiative Bhabha and 4641 Compton scattering events are collected. Total and differential cross sections for both reactions are presented and found to be in good agreement with QED expectations. Our measurement of Compton scattering at the highest energies obtained so far is used to derive exclusion limits on the coupling λ for the on-shell production of an excited electron e ★ decaying into a γ e pair in the mass range 20 GeV

2 data tables match query

Measured cross sections for radiative Bhabha scattering events.

Measured cross sections for the quasi-real Compton scattering events.


Multi-Hadronic Decays and Partial Widths of the J/psi (3100) Resonance Produced in e+ e- Annihilation at ADONE

Bacci, C. ; Baldini-Celio, R. ; Bozzo, M. ; et al.
Phys.Lett.B 58 (1975) 471-474, 1975.
Inspire Record 100017 DOI 10.17182/hepdata.27794

The reactions e + e − → hadrons and e + e + e − →e + e − have been studied at the J/gY (3100) resonance). The relative weights of the topological cross sections for fixed charged multiplicity are σ 2 =(32±5)%, σ 4 =(49±8)%, σ 6 =(18±3)%, and σ 8 =(1±0.6)%. The average pion multiplicities are 〈 n ch 〉=3.8±0.3 and 〈n π o 〉=3.1±0.8 . The decay widths are Γ e =(4.6±0.8) keV, Γ h =(59±24) keV, and Γ =(68±26) keV.

1 data table match query

CROSS SECTION AROUND RESONANCE.


Search for New Particles in $e^+ e^-$ Annihilation From 39.79-{GeV} to 45.52-{GeV}

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 53 (1984) 134, 1984.
Inspire Record 199819 DOI 10.17182/hepdata.20429

We have searched for resonances in the reaction e+e−→hadrons, γγ, μμ, and ee, in the energy range 39.79<s<45.52 GeV, using the Mark J detector at PETRA. We obtain stringent upper limits on the production of toponium and particles postulated to explain Z0→leptonpair+γ events observed at the CERN p―p collider. We also set limits on the mass and coupling constant of excited electrons.

1 data table match query

No description provided.


Test of the four-fermion contact interaction in e+ e- collisions at 130-GeV to 140-GeV.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Phys.Lett.B 387 (1996) 432-442, 1996.
Inspire Record 421997 DOI 10.17182/hepdata.47754

The differential cross-sections for e + e − → e + e − , e + e − → μ + μ − and e + e − → τ + τ − , and the total cross-section for e + e − → qq̄ at centre-of-mass energies of 130–140 GeV were studied using about 5 pb −1 of data collected with the OPAL detector at LEP in October and November 1995. The results are in agreement with the Standard Model predictions. Four-fermion contact interaction models were fitted to the data and lower limits were obtained on the energy scale Λ at the 95% confidence level.

1 data table match query

No description provided.


A Precise Determination of the Number of Families With Light Neutrinos and of the $Z$ Boson Partial Widths

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 235 (1990) 399-411, 1990.
Inspire Record 284411 DOI 10.17182/hepdata.29743

More extensive and precise results are reported on the parameters of Z decay. On the basis of 20 000 Z decays collected with the ALEPH detector at LEP we find M z =91.182±0.026 (exp.) ±0.030 (beam) GeV, Γ z =2.541±0.056 GeV and σ had 0 =41.4±0.8 nb. The partial widths for the hadronic and leptonic channels are Γ had =1804±44 MeV, Γ e + e − =82.1±3.4 MeV, Γ μ + μ − =87.9±6.0 MeV and Γ τ + τ − =86.1±5.6 MeV, in good agreement with the standard model. On the basis of the average leptonic width Γ ℓ + ℓ − =83.9±2.2 MeV, the effective weak mixing angle is found to be sin 2 θ w ( M z )=0.231±0.008. Usin g the partial widths calculated in the standard model, the number of light neutrino families is N ν =3.01±0.15 (exp.)±0.05 (theor.).

1 data table match query

No description provided.


Search for a Z-prime at the Z resonance

The L3 collaboration Adriani, O. ; Aguilar-Benitez, M. ; Ahlen, S.P. ; et al.
Phys.Lett.B 306 (1993) 187-196, 1993.
Inspire Record 355489 DOI 10.17182/hepdata.28919

The search for an additional heavy gauge boson Z′ is described. The models considered are based on either a superstring-motivated E 6 or on a left-right symmetry and assume a minimal Higgs sector. Cross sections and asymmetries measured with the L3 detector in the vicinity of the Z resonance during the 1990 and 1991 running periods are used to determine limits on the Z-Z′ gauge boson mixing angle and on the Z′ mass. For Z′ masses above the direct limits, we obtain the following allowed ranges of the mixing angle, θ M at the 95% confidence level: −0.004 ⪕ θ M ⪕ 0.015 for the χ model, −0.003 ⪕ θ M ⪕ 0.020 for the ψ model, −0.029 ⪕ θ M ⪕ 0.010 for the η model, −0.002 ⪕ θ M ⪕ 0.020 for the LR model,

4 data tables match query

Data taken during 1990.

Data taken during 1991.

Data taken during 1990.

More…

Measurement of electroweak parameters from Z decays into Fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 48 (1990) 365-392, 1990.
Inspire Record 298414 DOI 10.17182/hepdata.47314

We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.

1 data table match query

No description provided.


Update of electroweak parameters from Z decays

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 60 (1993) 71-82, 1993.
Inspire Record 354298 DOI 10.17182/hepdata.47312

Based on 520 000 fermion pairs accumulated during the first three years of data collection by the ALEPH detector at LEP, updated values of the resonance parameters of theZ are determined to beMZ=(91.187±0.009) GeV, ΓZ=(2.501±0.012) GeV, σhad0=(41.60±0.27) nb, andRℓ=20.78±0.13. The corresponding number of light neutrino species isNν=2.97±0.05. The forward-backward asymmetry in lepton-pair decays is used to determine the ratio of vector to axial-vector couplings of leptons:gV2(MZ2)/gA2(MZ2)=0.0052±0.0016. Combining this with ALEPH measurements of theb andc quark asymmetries and τ polarization gives sin2θWeff=0.2326±0.0013. Assuming the minimal Standard Model, and including measurements ofMW/MZ fromp\(\bar p\) colliders and neutrino-nucleon scattering, the mass of the top quark is\(M_{top} = 156 \pm \begin{array}{*{20}c} {22} \\ {25} \\ \end{array} \pm \begin{array}{*{20}c} {17} \\ {22Higgs} \\ \end{array} \) GeV.

3 data tables match query

Data from 1990 running period.

Data from 1991 running period.

Data for 1991 running period.


Measurement of hadron and lepton pair production from e+ e- annihilation at center-of-mass energies of 130-GeV and 136-GeV

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Phys.Lett.B 378 (1996) 373-384, 1996.
Inspire Record 421552 DOI 10.17182/hepdata.47801

Hadronic and leptonic cross-sections and forward-backward asymmetries are measured using 5.7 pb −1 of data taken with the ALEPH detector at LEP at centre-of-mass energies of 130 and 136 GeV. The results agree with Standard Model expectations. The measurement of hadronic cross-sections far away from the Z resonance improves the determination of the interference between photon and Z exchange. Constraints on models with extra Z bosons are presented.

2 data tables match query

Data with tight SPRIME cut.

Forward-Backward Asymmetry for tight SPRIME cuts.