Showing 4 of 4 results
This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton-proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb$^{-1}$ of collisions at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV, although in some case an additional 4.7 fb$^{-1}$ of collision data at $\sqrt{s}$ = 7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models.
Summary of the ATLAS Run 1 searches for direct stop pair production in models where no supersymmetric particle other than the $\tilde t_1$ and the $\tilde \chi_1^0$ is involved in the $\tilde t_1$ decay. Lines for $\Delta m(\tilde t_1, \chi_1^0 ) > m_{t}$ - t0L/t1L combined observed limit hepdata.cedar.ac.uk/view/ins1380183/d63 - t0L/t1L combined expected limit hepdata.cedar.ac.uk/view/ins1380183/d64 - t2L observed limit hepdata.cedar.ac.uk/view/ins1286444/d19 - t2L expected limit hepdata.cedar.ac.uk/view/ins1286444/d20 - SC observed limit $m_t< m_{\tilde t_1} < 198$ GeV - SC expected limit $m_t< m_{\tilde t_1} < 184$ GeV Lines for $m_b + m_W < \Delta m(\tilde t_1, \chi_1^0 ) < m_{t}$ - t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d22 - t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d23 - t2L observed limit hepdata.cedar.ac.uk/view/ins1286444/d22 - t2L expected limit hepdata.cedar.ac.uk/view/ins1286444/d23 - WW observed limit hepdata.cedar.ac.uk/view/ins1380183/d47 - WW expected limit hepdata.cedar.ac.uk/view/ins1380183/d48 Lines for $0 < \Delta m(\tilde t_1, \chi_1^0 ) < m_b + m_W $ - tc observed limit hepdata.cedar.ac.uk/view/ins1304459 (root macro) - tc expected limit hepdata.cedar.ac.uk/view/ins1304459 (root macro) - t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d22 - t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d23 - WW observed limit hepdata.cedar.ac.uk/view/ins1380183/d47 - WW expected limit hepdata.cedar.ac.uk/view/ins1380183/d48.
Upper limits on the stop pair production cross sections for different values of the branching ratios for the decays $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ and $\tilde{t}_1 \rightarrow ff'b\tilde{\chi}_1^0$, where BR$(\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0)$ + BR$(\tilde{t}_1 \rightarrow ff'b\tilde{\chi}_1^0)$ = 1. Signal points with $\Delta m (\tilde{t}_1, \tilde{\chi}_1^0)$ of 10 GeV are shown. The limits quoted are taken from the best performing, based on expected exclusion CLs, signal regions from the tc-M, tc-C, t1L-bCa_low and WW analyses at each mass point. - Theoretical cross section from twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections8TeVstopsbottom.
Upper limits on the stop pair production cross sections for different values of the branching ratios for the decays $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ and $\tilde{t}_1 \rightarrow ff'b\tilde{\chi}_1^0$, where BR$(\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0)$ + BR$(\tilde{t}_1 \rightarrow ff'b\tilde{\chi}_1^0)$ = 1. Signal points with $\Delta m (\tilde{t}_1, \tilde{\chi}_1^0)$ of 80 GeV are shown. The limits quoted are taken from the best performing, based on expected exclusion CLs, signal regions from the tc-M, tc-C, t1L-bCa_low and WW analyses at each mass point. - Theoretical cross section from twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections8TeVstopsbottom.
Combined exclusion limits assuming that the stop decays through $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 $ with branching ratio x and through $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^\pm $ with branching ratio 1-x. This table is for the observed limit for BR=75% - Observed limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d63 - Expected limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d64.
Combined exclusion limits assuming that the stop decays through $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 $ with branching ratio x and through $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^\pm $ with branching ratio 1-x. This table is for the expected limit for BR=75% - Observed limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d63 - Expected limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d64.
Combined exclusion limits assuming that the stop decays through $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 $ with branching ratio x and through $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^\pm $ with branching ratio 1-x. Observed limit for BR=50% - Observed limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d63 - Expected limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d64.
Combined exclusion limits assuming that the stop decays through $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 $ with branching ratio x and through $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^\pm $ with branching ratio 1-x. Expected limit for BR=50% - Observed limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d63 - Expected limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d64.
Combined exclusion limits assuming that the stop decays through $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 $ with branching ratio x and through $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^\pm $ with branching ratio 1-x. Observed limit for BR=25% - Observed limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d63 - Expected limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d64.
Combined exclusion limits assuming that the stop decays through $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 $ with branching ratio x and through $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^\pm $ with branching ratio 1-x. Expected limit for BR=25% - Observed limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d63 - Expected limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d64.
Combined exclusion limits assuming that the stop decays through $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 $ with branching ratio x and through $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^\pm $ with branching ratio 1-x. Observed limit for BR=0% - Observed limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d63 - Expected limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d64.
Combined exclusion limits assuming that the stop decays through $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 $ with branching ratio x and through $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^\pm $ with branching ratio 1-x. Expected limit for BR=0% - Observed limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d63 - Expected limit x=BR=100% See Fig 24. hepdata.cedar.ac.uk/view/ins1380183/d64.
Summary of the ATLAS Run 1 searches for direct stop pair production in models where the decay mode $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}$ with $ \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi_1^0}$ is assumed with a branching ratio of 100%. Limits for the b0L and t1L soft-lepton analyses in two scenarios Delta M = 5 GeV in light green and Delta M = 20 GeV in dark green), for a total of four limits - dM=5 GeV, b0L observed limit hepdata.cedar.ac.uk/view/ins1247462/d19 - dM=5 GeV, b0L expected limit hepdata.cedar.ac.uk/view/ins1247462/d22 - dM=5 GeV, t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d40 - dM=5 GeV, t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d41 - dM=20 GeV, b0L observed limit hepdata.cedar.ac.uk/view/ins1247462/d25 - dM=20 GeV, b0L expected limit hepdata.cedar.ac.uk/view/ins1247462/d28 - dM=20 GeV, t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d43 - dM=20 GeV, t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d44.
Summary of the ATLAS Run 1 searches for direct stop pair production in models where the decay mode $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}$ with $ \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi_1^0}$ is assumed with a branching ratio of 100%.Limits for the b0L, t1L and t2L analyses in scenarios with a fixed chargino mass of 106 GeV (dark green) and 150 GeV (light green) - M(ch1)=150 GeV, b0L observed limit hepdata.cedar.ac.uk/view/ins1247462/d13 - M(ch1)=150 GeV, b0L expected limit hepdata.cedar.ac.uk/view/ins1247462/d16 - M(ch1)=150 GeV, t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d34 - M(ch1)=150 GeV, t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d35 - M(ch1)=106 GeV, t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d37 - M(ch1)=106 GeV, t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d38 - M(ch1)=106 GeV, t2L observed limit hepdata.cedar.ac.uk/view/ins1286444/d25 - M(ch1)=106 GeV, t2L expected limit hepdata.cedar.ac.uk/view/ins1286444/d26.
Summary of the ATLAS Run 1 searches for direct stop pair production in models where the decay mode $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}$ with $ \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi_1^0}$ is assumed with a branching ratio of 100%.Limits for the t1L and t2L analyses in scenarios with the mass of the chargino set to twice the mass of the neutralino - M(ch1)=2M(chi0), t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d31 - M(ch1)=2M(chi0), t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d32 - M(ch1)=2M(chi0), t2L observed limit hepdata.cedar.ac.uk/view/ins1286444/d16 - M(ch1)=2M(chi0), t2L expected limit hepdata.cedar.ac.uk/view/ins1286444/d17.
Summary of the ATLAS Run 1 searches for direct stop pair production in models where the decay mode $\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}$ with $ \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi_1^0}$ is assumed with a branching ratio of 100%.Limits for the t1L and t2L and WW analyses in scenarios with the mass difference between chargino and neutralino is 10 GeV - dM=10 GeV, t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d46 - dM=10 GeV, t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d47 - dM=10 GeV, t2L observed limit hepdata.cedar.ac.uk/view/ins1286444/d10 - dM=10 GeV, t2L expected limit hepdata.cedar.ac.uk/view/ins1286444/d11 - dM=10 GeV, WW observed limit hepdata.cedar.ac.uk/view/ins1380183/d45 - dM=10 GeV, WW expected limit hepdata.cedar.ac.uk/view/ins1380183/d46.
Exclusion limits assuming that the stop decays through $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^\pm + W^{(*)} + \tilde{\chi}_1^0$ with branching ratio of 100% assuming a fixed stop mass of 300 GeV. - t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d49 - t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d50 - b0L observed limit hepdata.cedar.ac.uk/view/ins1247462/d7 - b0L expected limit hepdata.cedar.ac.uk/view/ins1247462/d10.
Exclusion limits at 95% CL in the scenario where $\tilde{t}_2$ pair production is assumed, followed by the decay $\tilde{t}_2 \rightarrow Z \tilde{t}_1$ or $\tilde{t}_2 \rightarrow \tilde{t}_1 h$ and then by $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with a branching ratio of 100%, as a function of the $\tilde{t}_2$ and $\tilde{\chi}_1^0$ mass. The $\tilde{t}_1$ mass is 180 GeV larger than the neutralino mass. This table is for the t2t1H observed limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d11 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d8.
Exclusion limits at 95% CL in the scenario where $\tilde{t}_2$ pair production is assumed, followed by the decay $\tilde{t}_2 \rightarrow Z \tilde{t}_1$ or $\tilde{t}_2 \rightarrow \tilde{t}_1 h$ and then by $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with a branching ratio of 100%, as a function of the $\tilde{t}_2$ and $\tilde{\chi}_1^0$ mass. The $\tilde{t}_1$ mass is 180 GeV larger than the neutralino mass. This table is for the t2t1H expected limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d11 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d8.
Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=350 GeV and m(chi1)=20 GeV (top plot). This table is for the t2t1H observed limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d14 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d15.
Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=350 GeV and m(chi1)=20 GeV (top plot). This table is for the t2t1H expected limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d14 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d15.
Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=350 GeV and m(chi1)=20 GeV (top plot). This table is for the t1L/t0L observed limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d14 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d15.
Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=350 GeV and m(chi1)=20 GeV (top plot). This table is for the t1L/t0L expected limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d14 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d15.
Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=500 GeV and m(chi1)=20 GeV (top plot). This table is for the t2t1H observed limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d16 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d17.
Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=500 GeV and m(chi1)=20 GeV (top plot). This table is for the t2t1H expected limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d16 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d17.
Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=500 GeV and m(chi1)=20 GeV (top plot). This table is for the t1L/t0L observed limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d16 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d17.
Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=500 GeV and m(chi1)=20 GeV (top plot). This table is for the t1Lt0L expected limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d16 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d17.
Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=500 GeV and m(chi1)=120 GeV (top plot). This table is for the t2t1H observed limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d18 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d19.
Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=500 GeV and m(chi1)=120 GeV (top plot). This table is for the t2t1H expected limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d18 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d19.
Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=500 GeV and m(chi1)=120 GeV (top plot). This table is for the t1L/t0L observed limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d18 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d19.
Exclusion limits as a function of the stop2 branching ratio for decays into Z, Higgs and neutralino. m(t2)=500 GeV and m(chi1)=120 GeV (top plot). This table is for the t1Lt0L expected limit. - t2t1Z observed limit hepdata.cedar.ac.uk/view/ins1286622/d18 - t2t1Z expected limit hepdata.cedar.ac.uk/view/ins1286622/d19.
Observed and expected 95% CL limits on sbottom pair production where the sbottom is assumed to decay as b1->b chi10 with a branching ratio of 100%. - b0L observed limit hepdata.cedar.ac.uk/view/ins1247462/d1 - b0L expected limit hepdata.cedar.ac.uk/view/ins1247462/d4 - tc observed limit hepdata.cedar.ac.uk/view/ins1304459 (root macro) - tc expected limit hepdata.cedar.ac.uk/view/ins1304459 (root macro).
Exclusion limits at 95% CL for a scenario where sbottoms are pair produced and decay as b1 -> t chi1+ with a BR of 100% - SS3L observed limit (mchi+=60 GeV): hepdata.cedar.ac.uk/resource/6164/finalExclusionGraphs/SBottomTopCharginoN60_observed.C - SS3L expected limit (mchi+=60 GeV): hepdata.cedar.ac.uk/resource/6164/finalExclusionGraphs/SBottomTopCharginoN60_expected.C - SS3L observed limit (mchi+=2 mchi0): hepdata.cedar.ac.uk/resource/6164/finalExclusionGraphs/SBottomTopCharginoNhalfC_observed.C - SS3L expected limit (mchi+=2 mchi0): hepdata.cedar.ac.uk/resource/6164/finalExclusionGraphs/SBottomTopCharginoNhalfC_expected.C.
Exclusion limits at 95% CL for a scenario where sbottoms are pair produced and decay as b1 -> b chi2 with a BR of 100% - g3b observed limit hepdata.cedar.ac.uk/view/ins1304457/d10 - g3b expected limit hepdata.cedar.ac.uk/view/ins1304457/d11.
Observed 95% CL exclusion limits for the naturalness-inspired set of pMSSM models from the combination t0L, t1L and tb analyses using the signal region yielding the smallest CLs value for the signal- plus-background hypothesis. This table is for the observed limit.
Expected 95% CL exclusion limits for the naturalness-inspired set of pMSSM models from the combination t0L, t1L and tb analyses using the signal region yielding the smallest CLs value for the signal- plus-background hypothesis. This table is for the expected limit.
Observed 95% CL exclusion limits for the pMSSM model with well-tempered neutralinos as a function of M1 and mqL3. The limit is obtained as the combination of the t0L, t1L, tb and SS3L analyses, This table is for the observed limit.
Expected 95% CL exclusion limits for the pMSSM model with well-tempered neutralinos as a function of M1 and mqL3. The limit is obtained as the combination of the t0L, t1L, tb and SS3L analyses, This table is for the expected limit.
Observed 95% CL exclusion limits for the pMSSM model with well-tempered neutralinos as a function of M1 and mtR. The limit is obtained using the t0L analysis. This table is for the observed limit.
Expected 95% CL exclusion limits for the pMSSM model with well-tempered neutralinos as a function of M1 and mtR. The limit is obtained using the t0L analysis. This table is for the expected limit.
Observed 95% CL exclusion limits for the set of h/Z-enriched pMSSM models as a function of $\mu$ and m(qL3). The limit of is obtained as the combination of the t0L, g3b, t2t1Z and SS3L analyses, This table is for the observed limit.
Expected 95% CL exclusion limits for the set of h/Z-enriched pMSSM models as a function of $\mu$ and m(qL3). The limit of is obtained as the combination of the t0L, g3b, t2t1Z and SS3L analyses, This table is for the expected limit.
Observed 95% CL exclusion limits for the set of h/Z-enriched pMSSM models as a function of $\mu$ and m(bR). The limit of is obtained as the combination of thet0L, t2t1Z and tb analyses, This table is for the observed limit.
Expected 95% CL exclusion limits for the set of h/Z-enriched pMSSM models as a function of $\mu$ and m(bR). The limit of is obtained as the combination of thet0L, t2t1Z and tb analyses, This table is for the expected limit.
Expected and observed 95% CL limits on the signal strength mu (defined as the ratio of the obtained stop cross section to the theoretical prediction) for the production of stop pairs as a function of m(stop). The stop is assumed to decay as t1->t chi0 or through its three-body decay depending on its mass. The neutralino is assumed to have a mass of 1 GeV.
Exclusion limits at 95% CL in the scenario where both pair-produced stop decay exclusively via $\tilde{t}_1 \rightarrow b \chi^\pm_1$ followed by $\chi^\pm_1 \rightarrow W \chi_1^0$ with $\Delta m(t_1, \chi_1^0)$ = 10 GeV. This table is for the observed limit.
Exclusion limits at 95% CL in the scenario where both pair-produced stop decay exclusively via $\tilde{t}_1 \rightarrow b \chi^\pm_1$ followed by $\chi^\pm_1 \rightarrow W \chi_1^0$ with $\Delta m(t_1, \chi_1^0)$ = 10 GeV. This table is for the expected limit.
Exclusion limits at 95% CL in the scenario where both pair-produced stop decay exclusively via three-body or four-body decay (depending on the neutralino and stop mass). This table is for the observed limit. - t1L observed limit (3-body) hepdata.cedar.ac.uk/view/ins1304456/d25 - t1L observed limit (4-body) hepdata.cedar.ac.uk/view/ins1304456/d28 - t2L observed limit hepdata.cedar.ac.uk/view/ins1286444/d23.
Exclusion limits at 95% CL in the scenario where both pair-produced stop decay exclusively via three-body or four-body decay (depending on the neutralino and stop mass). This table is for the expected limit. - t1L observed limit (3-body) hepdata.cedar.ac.uk/view/ins1304456/d25 - t1L observed limit (4-body) hepdata.cedar.ac.uk/view/ins1304456/d28 - t2L observed limit hepdata.cedar.ac.uk/view/ins1286444/d23.
Observed exclusion limits at 95% CL from the tb signal regions for simplified models with stop decays into both stop1->t chi10 and stop1-> b ch1 for BR(stop1->t chi10) = 25% and DM=5GeV. This table is for the Observed limit.
Expected exclusion limits at 95% CL from the tb signal regions for simplified models with stop decays into both stop1->t chi10 and stop1-> b ch1 for BR(stop1->t chi10) = 25% and DM=5GeV. This table is for the Expected limit.
Observed exclusion limits at 95% CL from the tb signal regions for simplified models with stop decays into both stop1->t chi10 and stop1-> b ch1 for BR(stop1->t chi10) = 25% and DM=20 GeV. This table is for the Observed limit.
Expected exclusion limits at 95% CL from the tb signal regions for simplified models with stop decays into both stop1->t chi10 and stop1-> b ch1 for BR(stop1->t chi10) = 25% and DM=20 GeV. This table is for the Expected limit.
Observed exclusion limits at 95% CL from the tb signal regions for simplified models with stop decays into both stop1->t chi10 and stop1-> b ch1 for BR(stop1->t chi10) = 50% and DM=5GeV. This table is for the Observed limit.
Expected exclusion limits at 95% CL from the tb signal regions for simplified models with stop decays into both stop1->t chi10 and stop1-> b ch1 for BR(stop1->t chi10) = 50% and DM=5 GeV. This table is for the Expected limit.
Observed exclusion limits at 95% CL from the tb signal regions for simplified models with stop decays into both stop1->t chi10 and stop1-> b ch1 for BR(stop1->t chi10) = 50% and DM=20GeV. This table is for the Observed limit.
Expected exclusion limits at 95% CL from the tb signal regions for simplified models with stop decays into both stop1->t chi10 and stop1-> b ch1 for BR(stop1->t chi10) = 50% and DM=20 GeV. This table is for the Expected limit.
Observed exclusion limits at 95% CL from the tb signal regions for simplified models with stop decays into both stop1->t chi10 and stop1-> b ch1 for BR(stop1->t chi10) = 75% and DM=5GeV. This table is for the Observed limit.
Expected exclusion limits at 95% CL from the tb signal regions for simplified models with stop decays into both stop1->t chi10 and stop1-> b ch1 for BR(stop1->t chi10) = 75% and DM=5 GeV. This table is for the Expected limit.
Observed exclusion limits at 95% CL from the tb signal regions for simplified models with stop decays into both stop1->t chi10 and stop1-> b ch1 for BR(stop1->t chi10) = 75% and DM=20GeV. This table is for the Observed limit.
Expected exclusion limits at 95% CL from the tb signal regions for simplified models with stop decays into both stop1->t chi10 and stop1-> b ch1 for BR(stop1->t chi10) = 75% and DM=20 GeV. This table is for the Expected limit.
Observed exclusion limits at 95% CL from the tb signal regions in the natural pMSSM model. This table is for the Observed limit.
Expected exclusion limits at 95% CL from the tb signal regions in the natural pMSSM model. This table is for the Expected limit.
Combined exclusion limits at 95% CL in the scenario where both stops decay exclusively via $\tilde t_1 \rightarrow t \tilde \chi_1^0 $. Observed limit contour line for the t0L/t1L combination.
Combined exclusion limits at 95% CL in the scenario where both stops decay exclusively via $\tilde t_1 \rightarrow t \tilde \chi_1^0 $. Expected limit contour line for the t0L/t1L combination.
Best expected SR for the WW analysis and the three- and four-body decays.
Cross-section upper limit for the WW analysis and the three- and four-body decays.
Expected CLs for the WW analysis and the 3- and 4-body decays.
Observed CLs for the WW analysis and the 3- and 4-body decays.
Best expected SR for the WW analysis and the stop1->chargino1 decay.
Cross section upper limit for the WW analysis and the stop1->chargino1 decay.
Expected CLs for the WW analysis and the stop1->chargino1 decay.
Observed CLs for the WW analysis and the stop1->chargino1 decay.
Cross section upper limit for the t2t1h analysis.
Expected CLs for the t2t1h analysis.
Observed CLs for the t2t1h analysis.
Best expected SR for the tb analysis in the pMSSM model.
Cross section upper limit for the tb analysis in the pMSSM model.
Efficiency for the SRinA signal region for the pMSSM model.
Efficiency for the SRinB signal region for the pMSSM model.
Efficiency for the SRinC signal region for the pMSSM model.
Efficiency for the SRexA signal region for the pMSSM model.
Best expected SR for the tb analysis in the simplified model with Delta(m) = 5 GeV and BR=50%.
Cross section upper limit for the tb analysis in the simplified model with Delta(m) = 5 GeV and BR=50%.
Best expected SR for the tb analysis in the simplified model with Delta(m) = 20 GeV and BR=50%.
Cross section upper limit for the tb analysis in the simplified model with Delta(m) = 20 GeV and BR=50%.
Best expected SR and cross section upper limit for the tb analysis in the simplified model with Delta(m) = 5 GeV and BR=25%.
Best expected SR and cross section upper limit for the tb analysis in the simplified model with Delta(m) = 20 GeV and BR=25%.
Best expected SR and cross section upper limit for the tb analysis in the simplified model with Delta(m) = 5 GeV and BR=75%.
Best expected SR and cross section upper limit for the tb analysis in the simplified model with Delta(m) = 20 GeV and BR=75%.
Exclusion limits for the naturalness-inspired set of pMSSM models from the combination t0L, t1L and tb analyses using the signal region yielding the smallest CLs value for the signal- plus-background hypothesis. This table is for the best expected signal region.
95% CL exclusion limits for the pMSSM model with well-tempered neutralinos as a function of M1 and mqL3. The limit is obtained as the combination of the t0L, t1L, tb and SS3L analyses, This table is for the best expected signal region.
Expected 95% CL exclusion limits for the pMSSM model with well-tempered neutralinos as a function of M1 and mtR. The limit is obtained using the t0L analysis. This table is for the best expected signal region.
95% CL exclusion limits for the set of h/Z-enriched pMSSM models as a function of $\mu$ and m(qL3). The limit of is obtained as the combination of the t0L, g3b, t2t1Z and SS3L analyses, This table is for the best expected signal region.
95% CL exclusion limits for the set of h/Z-enriched pMSSM models as a function of $\mu$ and m(bR). The limit of is obtained as the combination of the t0L, t2t1Z and tb analyses, This table is for the best expected signal region.
Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as $R$-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of 18.4 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 8 TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on $R$-hadrons and chargino production are set. Gluino $R$-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95$\%$ confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.
Ratio of the reconstructed mass, computed as the most probable value of a fit to a Landau distribution convolved with a Gaussian, to the generated mass, as a function of the generated mass for stable gluino R-hadrons, along with the half-width at half maximum of the reconstructed mass distribution normalised to the generated mass.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the stable R-hadron mass.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass = m(gluino) - 100 GeV with a lifetime of 1 ns.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the stable chargino mass.
Total selection efficiency as a function of the stable R-hadron mass.
Total selection efficiency as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 10 ns.
Total selection efficiency as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass = m(gluino) - 100 GeV with a lifetime of 10 ns.
Total selection efficiency as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.
Total selection efficiency as a function of the stable chargino mass.
Ionisation distribution of all the CR2 tracks, and those not matched to a reconstructed muon. The two distributions are normalised to their total number of entries.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for an example of gluino R-hadron signal, for searches for stable particles. The signal distributions are stacked on the expected background, and a narrower binning is used for them to allow the signal shape to be seen more clearly. The number of signal events is that expected according to the theoretical cross sections.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for one example of chargino signal, for searches for stable particles. The signal distributions are stacked on the expected background, and a narrower binning is used for them to allow the signal shape to be seen more clearly. The number of signal events is that expected according to the theoretical cross sections.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for background and data, for searches for stable particles. The expected background is shown with its total uncertainty (sum in quadrature of statistical, normalisation and systematic errors).
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for an example of gluino R-hadron signal, for searches for metastable particles. The signal distributions are stacked on the expected background, and a narrower binning is used for them to allow the signal shape to be seen more clearly. The number of signal events is that expected according to the theoretical cross sections.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for an example of chargino signal, for searches for metastable particles. The signal distributions are stacked on the expected background, and a narrower binning is used for them to allow the signal shape to be seen more clearly. The number of signal events is that expected according to the theoretical cross sections.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for background and data. The expected background is shown with its total uncertainty (sum in quadrature of statistical, normalisation and systematic errors).
Theoretical values for the cross section of gluino pairs production with their uncertainty.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a light neutralino of mass 100 GeV, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a light neutralino of mass 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a heavy neutralino of mass(gluino) - 100 GeV, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a heavy neutralino of mass(gluino) - 100 GeV.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section plus its uncertainty.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section plus its uncertainty.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into tt plus a light neutralino of mass 100 GeV, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into tt plus a light neutralino of mass 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into tt plus a heavy neutralino of mass(gluino) - 100 GeV, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into tt plus a heavy neutralino of mass(gluino) - 100 GeV.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section plus its uncertainty.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section plus its uncertainty.
Theoretical values for the production cross section of charginos or chargino/neutralino pairs, with their uncertainty.
Expected upper limits on the production cross section as a function of mass for metastable charginos, with lifetime tau =1.0 ns, decaying into neutralino + pion, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable charginos, with lifetime tau =1.0 ns, decaying into neutralino + pion.
The expected excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section plus its uncertainty.
dEdx ionization for data, 1 TeV gluino R-hadrons stable and decaying in 100 GeV neutralinos with a 10 ns lifetime and for charginos of 350 GeV. Tracks that fulfil all the requirements up to including the High-m_T (see Tab.1 in the paper) are considered at this stage and normalised to an integrated luminosity of 18.4 fb^-1.
Expected upper limits on the production cross section as a function of mass for stable gluino R-hadrons, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for stable gluino R-hadrons.
Theoretical values for the cross section of squark pairs production with their uncertainty.
Expected upper limits on the production cross section as a function of mass for stable sbottom R-hadrons, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for stable sbottom $R$-hadrons. Cross section IN PB.
Expected upper limits on the production cross section as a function of mass for stop R-hadrons, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for stop R-hadrons.
Expected upper limits on the production cross section as a function of mass for stable charginos, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for stable charginos.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to g/qq plus a light neutralino of mass 100 GeV.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to g/qq plus a light neutralino of mass 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to tt plus a light neutralino of mass 100 GeV.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to tt plus a light neutralino of mass 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to tt plus a heavy neutralino of mass = m(gluino) - 100 GeV.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to tt plus a heavy neutralino of mass = m(gluino) - 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable charginos, with lifetime tau =15 ns, decaying to neutralino and pion, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable charginos, with lifetime tau =15 ns, decaying to neutralino and pion, in case of background only, with its 1 sigma band.
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider (LHC) are reported. The search is based on proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 8$ TeV collected in 2012, corresponding to an integrated luminosity of 20 fb$^{-1}$. No significant excess above the Standard Model expectation is observed. Limits are set on the parameters of a minimal universal extra dimensions model, excluding a compactification radius of $1/R_c=950$ GeV for a cut-off scale times radius ($\Lambda R_c$) of approximately 30, as well as on sparticle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet inclusive signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}$ distribution in soft dimuon signal region. The last bin includes the overflow.
Observed and expected $m_{eff}^{incl}$ distribution in hard single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $m_{eff}^{incl}$ distribution for hard single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_{T}^{miss}$ distribution for hard single-lepton 6-jet signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard same-flavour dilepton low-multiplicity signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard same-flavour dilepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard opposite-flavour dilepton low-multiplicity signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard opposite-flavour dilepton 3-jet opposite-flavour signal region. The last bin includes the overflow.
Observed 95% exclusion contour for the mSUGRA/CMSSM model with $\tan\beta=30$, $A_{0}=-2m_{0}$ and $\mu > 0$.
Expected 95% exclusion contour for the mSUGRA/CMSSM model with $\tan\beta=30$, $A_{0}=-2m_{0}$ and $\mu > 0$.
Observed 95% exclusion contour for the bRPV MSUGRA/CMSSM model.
Expected 95% exclusion contour for the bRPV MSUGRA/CMSSM model.
Observed 95% exclusion contour for the natural gauge mediation with a stau NLSP model (nGM).
Expected 95% exclusion contour for the natural gauge mediation with a stau NLSP model (nGM).
Observed 95% exclusion contour for the non-universal higgs masses with gaugino mediation model (NUHMG).
Expected 95% exclusion contour for the non-universal higgs masses with gaugino mediation model (NUHMG).
Observed 95% exclusion contour for the minimal UED model from the combination of the hard dilepton and soft dilepton analyses.
Expected 95% exclusion contour for the minimal UED model from the combination of the hard dilepton and soft dilepton analyses.
Observed 95% exclusion contour for the minimal UED model from the hard dilepton analysis.
Expected 95% exclusion contour for the minimal UED model from the hard dilepton analysis.
Observed 95% exclusion contour for the minimal UED model from the soft dilepton analysis.
Expected 95% exclusion contour for the minimal UED model from the soft dilepton analysis.
Observed 95% exclusion contour for the simplified model with gluino-mediated top squark production where the top squark is assumed to decay exclusively via $\tilde{t} \rightarrow c \tilde{\chi}^{0}_{1}$.
Expected 95% exclusion contour for the simplified model with gluino-mediated top squark production, where the top squark is assumed to decay exclusively via $\tilde{t} \rightarrow c \tilde{\chi}^{0}_{1}$.
Observed 95% exclusion contour for the simplified model with gluino-mediated top squark production where the gluinos are assumed to decay exclusively through a virtual top squark, $\tilde{g} \rightarrow tt+\tilde{\chi}^{0}_{1}$.
Expected 95% exclusion contour for the simplified model with gluino-mediated top squark production where the gluinos are assumed to decay exclusively through a virtual top squark, $\tilde{g} \rightarrow tt+\tilde{\chi}^{0}_{1}$.
Observed 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the soft single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the soft single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the hard single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the hard single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the soft single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the soft single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the gluino simplified model from the hard single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the hard single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the gluino simplified model from the soft single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the soft single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the combination of soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the soft single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the soft single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the combination of the hard dilepton and hard single-lepton analyses.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the combination of the hard dilepton and hard single-lepton analyses.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard single-lepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard single-lepton analysis.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard dilepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard dilepton analysis.
Observed 95% exclusion contour for the two-step first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Expected 95% exclusion contour for the two-step first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Observed 95% exclusion contour for the two-step gluino simplified model without sleptons from the hard single-lepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model without sleptons from the hard single-lepton analysis.
Number of generated events in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Production cross-section in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Number of generated events in the the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV. squark decaying to quark neutralino1 with varying x.
Production cross-section in the the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Number of generated evens in the minimal UED model.
Production cross-section in the minimal UED model in pb.
Number of generated events in the two-step first- and second-generation squark simplified model with sleptons.
Production cross-section in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for soft single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for soft single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for soft single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for soft single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for soft single-lepton 3-jet inclusive signal region in the gluino simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for the soft single-lepton 3-jet inclusive signal region in the gluino simplified model for the case in x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is varied and the LSP mass is set at 60 GeV. The chargino mass is parameterised using x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)).
Observed CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is varied and the LSP mass is set at 60 GeV. The chargino mass is parameterised using x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)).
Acceptance for soft dimuon signal region in the minimal UED model (mUED).
Efficiency for soft dimuon signal region in minimal UED model (mUED).
Acceptance for hard dilepton 3-jet opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton 3jet opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton 3-jet same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton 3-jet same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton low-multiplicity opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton low-multiplicity opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton low-multiplicity same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton low-multiplicity same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Best expected signal region in the minimal UED model (mUED).
Expected CLs from hard dilepton analysis in the two-step first- and second-generation squark simplified model with sleptons.
Observed CLs from the hard dilepton analysis in the two-step first- and second-generation squark simplified model with sleptons.
Expected CLs from the combination of the soft dimuon and hard dilepton analyses in the minimal UED model (mUED).
Observed CLs from the combination of the soft dimuon and hard dilepton analyses in the minimal UED model (mUED).
Acceptance for hard single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 6-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 6-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 3-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 3-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Acceptance for hard single-lepton 5-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 5-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Acceptance for hard single-lepton 6-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 6-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% upper limit on the visible cross-section in the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% upper limit on the visible cross-section in the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% upper limit on the visible cross-section in the first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Observed 95% upper limit on the visible cross-section in the minimal UED model (mUED) from the combination of the soft dimuon and hard dilepton analyses.
A search for squarks and gluinos in final states containing high-$p_{\rm T}$ jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in $\sqrt{s}=8$ TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of $20.3 \mathrm{fb}^{-1}$. No significant excess above the Standard Model expectation is observed. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with $\tan\beta=30$, $A_0=-2m_0$ and $\mu> 0$, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.
The effective mass distribution in 2-jet loose signal region.
The effective mass distribution in 2-jet medium and tight signal regions.
The effective mass distribution in 2-jet (W) signal region.
The effective mass distribution in 3-jet signal region.
The effective mass distribution in 4-jet (W) signal region.
The effective mass distribution in 4-jet very-loose and loose signal regions.
The effective mass distribution in 4-jet medium signal region.
The effective mass distribution in 4-jet tight signal region.
The effective mass distribution in 5-jet signal region.
The effective mass distribution in 6-jet loose and medium signal regions.
The effective mass distribution in 6-jet tight signal region.
The effective mass distribution in 6-jet very-tight signal region.
Observed limit 95% CL.
Expected limit 95% CL.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Expected limit 95% CL -1 sigma.
Observed limit 95% CL.
Expected limit 95% CL.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Expected limit 95% CL -1 sigma.
Observed limit 95% CL (m_chi^0_1=0GeV).
Expected limit 95% CL (m_chi^0_1=0GeV).
Observed limit 95% CL +1 sigma (m_chi^0_1=0GeV).
Observed limit 95% CL -1 sigma (m_chi^0_1=0GeV).
Expected limit 95% CL +1 sigma (m_chi^0_1=0GeV).
Expected limit 95% CL -1 sigma (m_chi^0_1=0GeV).
Observed limit 95% CL (m_chi^0_1=395GeV).
Expected limit 95% CL (m_chi^0_1=395GeV).
Observed limit 95% CL (m_chi^0_1=695GeV).
Expected limit 95% CL (m_chi^0_1=695GeV).
Expected limit 95% CL.
Expected limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL.
Expected limit 95% CL.
Expected limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL.
Expected limit 95% CL.
Expected limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL.
Observed CLs contour for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed CLs contour with plus 1-sigma signal cross-section uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed CLs contour with minus 1-sigma signal cross-section uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Expected CLs contour for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Expected CLs contour with plus 1-sigma experimental uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Expected CLs contour with minus 1-sigma experimental uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed CLs contour for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed CLs contour with plus 1-sigma signal cross-section uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed CLs contour with minus 1-sigma signal cross-section uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Expected CLs contour for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Expected CLs contour with plus 1-sigma experimental uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Expected CLs contour with minus 1-sigma experimental uncertainty for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed CLs contour for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Observed CLs contour with plus 1-sigma signal cross-section uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Observed CLs contour with minus 1-sigma signal cross-section uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Expected CLs contour for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Expected CLs contour with plus 1-sigma experimental uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
First of two expected CLs contours with minus 1-sigma experimental uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Second of two expected CLs contours with minus 1-sigma experimental uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Observed CLs contour for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Observed CLs contour with plus 1-sigma signal cross-section uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Observed CLs contour with minus 1-sigma signal cross-section uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Expected CLs contour for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Expected CLs contour with plus 1-sigma experimental uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Expected CLs contour with minus 1-sigma experimental uncertainty for the pair-produced squarks each decaying via an intermediate chargino1 to a quark, a W boson and a neutralino1.
Expected limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL.
Expected limit 95% CL.
Expected limit 95% CL.
Expected limit 95% CL -1 sigma.
Expected limit 95% CL +1 sigma.
Observed limit 95% CL -1 sigma.
Observed limit 95% CL +1 sigma.
Observed limit 95% CL.
Signal region for points.
Signal region for points.
Signal region for points (m_chi^0_1=0GeV).
Signal region for points (m_chi^0_1=395GeV).
Signal region for points (m_chi^0_1=695GeV).
Observed 95% CL cross-section upper limit for pair-produced gluinos decaying directly.
Observed 95% CL cross-section upper limit for associated gluino-squark production.
Observed 95% CL cross-section upper limit for pair-produced squarks decaying directly.
Observed 95% CL cross-section upper limit for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed 95% CL cross-section upper limit for the pair-produced gluinos each decaying via an intermediate chargino1 to two quarks, a W boson and a neutralino1.
Observed 95% CL cross-section upper limit for the pair-produced squarks each decaying via an intermediate chargino1 to quark, a W boson and a neutralino1.
Observed 95% CL cross-section upper limit for the pair-produced squarks each decaying via an intermediate chargino1 to quark, a W boson and a neutralino1.
Signal region for points.
Observed 95% CL cross-section upper limit for pair-produced gluinos decaying via stops into top+charm+neutralino1.
Production cross-section in PB.
Signal acceptance in PCT for SR2jl.
Signal acceptance times reconstruction efficiency in PCT for SR2jl.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jl.
Signal acceptance in PCT for SR2jm.
Signal acceptance times reconstruction efficiency in PCT for SR2jm.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jm.
Signal acceptance in PCT for SR2jt.
Signal acceptance times reconstruction efficiency in PCT for SR2jt.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jt.
Signal acceptance in PCT for SR2jW.
Signal acceptance times reconstruction efficiency in PCT for SR2jW.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jW.
Signal acceptance in PCT for SR3j.
Signal acceptance times reconstruction efficiency in PCT for SR3j.
Uncertainty on signal acceptance times reconstruction efficiency for SR3j.
Signal acceptance in PCT for SR4jW.
Signal acceptance times reconstruction efficiency in PCT for SR4jW.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jW.
Signal acceptance in PCT for SR4jl-.
Signal acceptance times reconstruction efficiency in PCT for SR4jl-.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jl-.
Signal acceptance in PCT for SR4jl.
Signal acceptance times reconstruction efficiency in PCT for SR4jl.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jl.
Signal acceptance in PCT for SR4jm.
Signal acceptance times reconstruction efficiency in PCT for SR4jm.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jm.
Signal acceptance in PCT for SR4jt.
Signal acceptance times reconstruction efficiency in PCT for SR4jt.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jt.
Signal acceptance in PCT for SR5j.
Signal acceptance times reconstruction efficiency in PCT for SR5j.
Uncertainty on signal acceptance times reconstruction efficiency for SR5j.
Signal acceptance in PCT for SR6jl.
Signal acceptance times reconstruction efficiency in PCT for SR6jl.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jl.
Signal acceptance in PCT for SR6jm.
Signal acceptance times reconstruction efficiency in PCT for SR6jm.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jm.
Signal acceptance in PCT for SR6jt.
Signal acceptance times reconstruction efficiency in PCT for SR6jt.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jt.
Signal acceptance in PCT for SR6jt+.
Signal acceptance times reconstruction efficiency in PCT for SR6jt+.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jt+.
Production cross-section in PB.
Signal acceptance in PCT for SR2jl.
Signal acceptance times reconstruction efficiency in PCT for SR2jl.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jl.
Signal acceptance in PCT for SR2jm.
Signal acceptance times reconstruction efficiency in PCT for SR2jm.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jm.
Signal acceptance in PCT for SR2jt.
Signal acceptance times reconstruction efficiency in PCT for SR2jt.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jt.
Signal acceptance in PCT for SR2jW.
Signal acceptance times reconstruction efficiency in PCT for SR2jW.
Uncertainty on signal acceptance times reconstruction efficiency for SR2jW.
Signal acceptance in PCT for SR3j.
Signal acceptance times reconstruction efficiency in PCT for SR3j.
Uncertainty on signal acceptance times reconstruction efficiency for SR3j.
Signal acceptance in PCT for SR4jW.
Signal acceptance times reconstruction efficiency in PCT for SR4jW.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jW.
Signal acceptance in PCT for SR4jl-.
Signal acceptance times reconstruction efficiency in PCT for SR4jl-.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jl-.
Signal acceptance in PCT for SR4jl.
Signal acceptance times reconstruction efficiency in PCT for SR4jl.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jl.
Signal acceptance in PCT for SR4jm.
Signal acceptance times reconstruction efficiency in PCT for SR4jm.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jm.
Signal acceptance in PCT for SR4jt.
Signal acceptance times reconstruction efficiency in PCT for SR4jt.
Uncertainty on signal acceptance times reconstruction efficiency for SR4jt.
Signal acceptance in PCT for SR5j.
Signal acceptance times reconstruction efficiency in PCT for SR5j.
Uncertainty on signal acceptance times reconstruction efficiency for SR5j.
Signal acceptance in PCT for SR6jl.
Signal acceptance times reconstruction efficiency in PCT for SR6jl.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jl.
Signal acceptance in PCT for SR6jm.
Signal acceptance times reconstruction efficiency in PCT for SR6jm.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jm.
Signal acceptance in PCT for SR6jt.
Signal acceptance times reconstruction efficiency in PCT for SR6jt.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jt.
Signal acceptance in PCT for SR6jt+.
Signal acceptance times reconstruction efficiency in PCT for SR6jt+.
Uncertainty on signal acceptance times reconstruction efficiency for SR6jt+.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.