Measurement of $\phi$-meson production at forward rapidity in $p$$+$$p$ collisions at $\sqrt{s}$=510 GeV and energy dependence of $\sigma_\phi$ from $\sqrt{s}$=200 GeV to 7 TeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 98 (2018) 092006, 2018.
Inspire Record 1628651 DOI 10.17182/hepdata.142337

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section of $\phi$(1020) meson production at forward rapidity in $p$$+$$p$ collisions at $\sqrt{s}=$510 GeV via the dimuon decay channel. The integrated cross section in the rapidity and $p_T$ ranges $1.2<|y|<2.2$ and $2<p_T<7$ GeV/$c$ is $\sigma_\phi=2.79 \pm 0.20\,{\rm (stat)} \pm 0.17\,{\rm (syst)} \pm 0.34\, {\rm (norm)} \times 10^{-2}$~mb. The energy dependence of $\sigma_\phi$ ($1.2<|y|<2.2$; $2<p_T<5$ GeV/$c$) is studied using the PHENIX measurements at $\sqrt{s}=$200 and 510 GeV and the Large-Hadron-Collider measurements at $\sqrt{s}=$2.76 and 7 TeV. The experimental results are compared to various event generator predictions (pythia6, pythia8, phojet, ampt, epos3, and epos-lhc).

3 data tables

The $\phi$-meson-production cross section d$\sigma_{\phi}$/dy in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV integrated in the transverse-momentum range 2 < $p_T$ < 7 GeV/$c$.

The $\phi$-meson-production cross section d$\sigma_{\phi}$/dy in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV integrated in the transverse-momentum range 2 < $p_T$ < 7 GeV/$c$.

The $\phi$-meson-differential-production cross section d${}^{2}$$\sigma_{\phi}/dp_T dy$ for 1.2 < |y| < 2.2 in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV.


Search for heavy resonances decaying into $WW$ in the $e\nu\mu\nu$ final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 24, 2018.
Inspire Record 1628411 DOI 10.17182/hepdata.79407

A search for neutral heavy resonances is performed in the $WW\to e\nu\mu\nu$ decay channel using $pp$ collision data corresponding to an integrated luminosity of 36.1 fb$^{-1}$, collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. No evidence of such heavy resonances is found. In the search for production via the quark--antiquark annihilation or gluon--gluon fusion process, upper limits on $\sigma_X \times B(X \to WW)$ as a function of the resonance mass are obtained in the mass range between 200 GeV and up to 5 TeV for various benchmark models: a Higgs-like scalar in different width scenarios, a two-Higgs-doublet model, a heavy vector triplet model, and a warped extra dimensions model. In the vector-boson fusion process, constraints are also obtained on these resonances, as well as on a Higgs boson in the Georgi--Machacek model and a heavy tensor particle coupling only to gauge bosons.

32 data tables

Figure 1, left, subfigure a, Acceptance times efficiency as a function of signal mass for the ggF or qqA production. The "0" efficiency mass point means there's no such signal sample for the corresponding model.

Figure 1, right, subfigure b, Acceptance times efficiency as a function of signal mass for the VBF production. The "0" efficiency mass point means there's no such signal sample for the corresponding model.

Figure 2, left, subfigure a, Transverse mass distribution in the ggF top-quark control regions. For NWA signals, the "0" value means lack of statistics.

More…

Measurement of the cross-section for electroweak production of dijets in association with a $Z$ boson in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 775 (2017) 206-228, 2017.
Inspire Record 1627873 DOI 10.17182/hepdata.77267

The cross-section for the production of two jets in association with a leptonically decaying Z boson ($Zjj$) is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data recorded with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The electroweak $Zjj$ cross-section is extracted in a fiducial region chosen to enhance the electroweak contribution relative to the dominant Drell-Yan $Zjj$ process, which is constrained using a data-driven approach. The measured fiducial electroweak cross-section is $\sigma^{Zjj}_{EW}= 119\pm 16 (\mathrm{stat.}) \pm 20 (\mathrm{syst.})\pm 2 (\mathrm{lumi.})$ for dijet invariant mass greater than 250 GeV, and $34.2\pm 5.8 (\mathrm{stat.})\pm 5.5 (\mathrm{syst.})\pm 0.7 (\mathrm{lumi.})$ for dijet invariant mass greater than 1 TeV. Standard Model predictions are in agreement with the measurements. The inclusive $Zjj$ cross-section is also measured in six different fiducial regions with varying contributions from electroweak and Drell-Yan $Zjj$ production.

4 data tables

Fiducial regions definitions

Measured and predicted inclusive Zjj production cross-sections in the six fiducial regions

Measured and predicted EW-Zjj production cross-sections in the EW-enriched fiducial regions with and without an additional kinematic requirement of $m_{jj} > $ 1 TeV

More…

Search for new phenomena in high-mass final states with a photon and a jet from $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 102, 2018.
Inspire Record 1627878 DOI 10.17182/hepdata.78551

A search is performed for new phenomena in events having a photon with high transverse momentum and a jet collected in 36.7 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The invariant mass distribution of the leading photon and jet is examined to look for the resonant production of new particles or the presence of new high-mass states beyond the Standard Model. No significant deviation from the background-only hypothesis is observed and cross-section limits for generic Gaussian-shaped resonances are extracted. Excited quarks hypothesized in quark compositeness models and high-mass states predicted in quantum black hole models with extra dimensions are also examined in the analysis. The observed data exclude, at 95% confidence level, the mass range below 5.3 TeV for excited quarks and 7.1 TeV (4.4 TeV) for quantum black holes in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model with six (one) extra dimensions.

6 data tables

Observed 95% CL upper limits on the production cross section times branching ratio to a photon and a quark or gluon for the excited-quarks model.The limits are placed as a function of m_q* for the excited-quark signal. The calculation is performed using ensemble tests for masses in the search range every 250 GeV up to 5 TeV and then 200 GeV up to 6 TeV.

Observed 95% CL upper limits on the production cross section times branching ratio to a photon and a quark or gluon for the RS1 model. The limits are placed as a function of M_th. The calculation is performed using ensemble tests for masses in the search range every 200 GeV.

Fiducial acceptance and selection efficiency for the excited quark model as a function of the excited-quark mass.

More…

Version 2
Measurement of lepton differential distributions and the top quark mass in $t\bar{t}$ production in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 804, 2017.
Inspire Record 1626105 DOI 10.17182/hepdata.77890

This paper presents single lepton and dilepton kinematic distributions measured in dileptonic $t\bar{t}$ events produced in 20.2 fb$^{-1}$ of $\sqrt{s}=8$ TeV $pp$ collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge $e\mu$ pair and one or two $b$-tagged jets. The cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of $m_t^{\rm pole}=173.2\pm 0.9\pm0.8\pm1.2$ GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.

32 data tables

Absolute differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb).

Absolute differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb).

Normalised differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb).

More…

Observation of correlated azimuthal anisotropy Fourier harmonics in pp and pPb collisions at the LHC

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 092301, 2018.
Inspire Record 1626103 DOI 10.17182/hepdata.79667

The azimuthal anisotropy Fourier coefficients ($v_n$) in 8.16 TeV pPb data are extracted via long-range two-particle correlations as a function of event multiplicity and compared to corresponding results in pp and PbPb collisions. Using a four-particle cumulant technique, $v_n$ correlations are measured for the first time in pp and pPb collisions. The $v_2$ and $v_4$ coefficients are found to be positively correlated in all collision systems. For high multiplicity pPb collisions an anticorrelation of $v_2$ and $v_3$ is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The new correlation results strengthen the case for a common origin of the collectivity seen in pPb and PbPb collisions in the measured multiplicity range.

9 data tables

The $v_{n}$ result from 2-particle correlation as a function of multiplicity ($N_{trk}^{offline}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV. Results after low-multiplicity subtraction are denoted as $v_{n}^{sub}$.

The $v_{n}$ result from 2-particle correlation as a function of multiplicity ($N_{trk}^{offline}$) in pPb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV. Results after low-multiplicity subtraction are denoted as $v_{n}^{sub}$.

The $v_{4}$ result from 2-particle correlation as a function of multiplicity ($N_{trk}^{offline}$) in pp collisions at $\sqrt{s}$ = 13.00 TeV. Results after low-multiplicity subtraction are denoted as $v_{4}^{sub}$.

More…

Measurements of the pp$\to$ZZ production cross section and the Z$\to 4\ell$ branching fraction, and constraints on anomalous triple gauge couplings at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 165, 2018.
Inspire Record 1625296 DOI 10.17182/hepdata.80152

Four-lepton production in proton-proton collisions, $\mathrm{pp}\to (\mathrm{Z}/ \gamma^*)(\mathrm{Z}/\gamma^*) \to 4\ell$, where $\ell = \mathrm{e}$ or $\mu$, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The ZZ production cross section, $\sigma(\mathrm{pp} \to \mathrm{Z}\mathrm{Z}) = 17.2 \pm 0.5\text{ (stat) }\pm 0.7\text{ (syst) }\pm 0.4(\mathrm{theo}) \pm 0.4\text{ (lumi)}$ pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region $60 < m_{\ell^+\ell^-} < $120 GeV, is consistent with standard model predictions. Differential cross sections are measured and are well described by the theoretical predictions. The Z boson branching fraction to four leptons is measured to be $\mathcal{B}(\mathrm{Z}\to 4\ell) = 4.8 \pm 0.2\text{ (stat) }\pm 0.2\text{ (syst) } \pm 0.1\text{ (theo) }\pm 0.1\text{ (lumi) }\times 10^{-6}$ for events with a four-lepton invariant mass in the range 80 $ < m_{4\ell} < $ 100 GeV and a dilepton mass $m_{\ell\ell} > $4 GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ$\gamma$ couplings at 95% confidence level: $-0.0012 < f_4^\mathrm{Z} < 0.0010$, $-0.0010 < f_5^\mathrm{Z} < 0.0013$, $-0.0012 < f_4^{\gamma} < 0.0013$, $-0.0012 < f_5^{\gamma} < 0.0013$.

14 data tables

The measured total ZZ cross section using 2016 data. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity and theortical sources, the second is theoretical uncertianty on the extrapolation from the selected region to the total phase space, the third is the luminosity uncertianty

The measured total ZZ cross section using 2015 and 2016. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity and theortical sources, the second is theoretical uncertianty on the extrapolation from the selected region to the total phase space, the third is the luminosity uncertianty

The measured fiducial ZZ cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity uncertianty

More…

$ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross-section measurements and search for anomalous triple gauge couplings in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 032005, 2018.
Inspire Record 1625109 DOI 10.17182/hepdata.82224

Measurements of $ZZ$ production in the $\ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ channel in proton-proton collisions at 13 TeV center-of-mass energy at the Large Hadron Collider are presented. The data correspond to 36.1 $\mathrm{fb}^{-1}$ of collisions collected by the ATLAS experiment in 2015 and 2016. Here $\ell$ and $\ell'$ stand for electrons or muons. Integrated and differential $ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross sections with $Z \to \ell^+\ell^-$ candidate masses in the range of 66 GeV to 116 GeV are measured in a fiducial phase space corresponding to the detector acceptance and corrected for detector effects. The differential cross sections are presented in bins of twenty observables, including several that describe the jet activity. The integrated cross section is also extrapolated to a total phase space and to all Standard-Model decays of $Z$ bosons with mass between 66 GeV and 116 GeV, resulting in a value of $17.3 \pm 0.9$ [$\pm 0.6$ (stat.) $\pm 0.5$ (syst.) $\pm 0.6$ (lumi.)] pb. The measurements are found to be in good agreement with the Standard-Model predictions. A search for neutral triple gauge couplings is performed using the transverse momentum distribution of the leading $Z$-boson candidate. No evidence for such couplings is found and exclusion limits are set on their parameters.

121 data tables

Integrated fiducial cross sections. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.

Differential fiducial cross section as function of the transverse momentum of the four-lepton system. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.

Predicted background as function of the transverse momentum of the four-lepton system.

More…

Study of ordered hadron chains with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 96 (2017) 092008, 2017.
Inspire Record 1624693 DOI 10.17182/hepdata.77268

The analysis of the momentum difference between charged hadrons in high-energy proton-proton collisions is performed in order to study coherent particle production. The observed correlation pattern agrees with a model of a helical QCD string fragmenting into a chain of ground-state hadrons. A threshold momentum difference in the production of adjacent pairs of charged hadrons is observed, in agreement with model predictions. The presence of low-mass hadron chains also explains the emergence of charge-combination-dependent two-particle correlations commonly attributed to Bose-Einstein interference. The data sample consists of 190 inverse microbarns of minimum bias events collected with proton-proton collisions at a center-of-mass energy of 7 TeV in the early low-luminosity data taking with the ATLAS detector at the LHC.

6 data tables

The inclusive Delta as a function of $Q$, in the interval 0.02 GeV < Q < 2 GeV.

The Delta(3h), for 3-hadron chains with mass below 0.59 GeV, as a function of $Q$, in the interval 0.02 GeV < Q < 0.36 GeV.

The Dalitz plot, for 3-hadron chains with mass below 0.59 GeV. Coordinates X = sqrt(3)(T0-T2)/sum(T) , Y = 3T1/sum(T) - 1. T0/T1/T2 stand for kinetic energy of hadrons in the rest frame of the triplet ( hadrons 0 and 2 form like-sign pair).

More…

Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 97 (2018) 032006, 2018.
Inspire Record 1624692 DOI 10.17182/hepdata.83542

A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality $Q^{2}>1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W > 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 < x < 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 < z < 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 < P_{\rm{hT}}^{2} < 3$ (GeV/$c$)$^2$. The multiplicities are presented as a function of $P_{\rm{hT}}^{2}$ in three-dimensional bins of $x$, $Q^2$, $z$ and compared to previous semi-inclusive measurements. We explore the small-$P_{\rm{hT}}^{2}$ region, i.e. $P_{\rm{hT}}^{2} < 1$ (GeV/$c$)$^2$, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger $P_{\rm{hT}}^{2}$, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small $P_{\rm{hT}}^{2}$ to study the dependence of the average transverse momentum $\langle P_{\rm{hT}}^{2}\rangle$ on $x$, $Q^2$ and $z$. The power-law behaviour of the multiplicities at large $P_{\rm{hT}}^{2}$ is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.

162 data tables
More…