Measurement of event shape variables in deep inelastic e p scattering.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Phys.Lett.B 406 (1997) 256-270, 1997.
Inspire Record 443753 DOI 10.17182/hepdata.23948

Deep inelastic e^+ scattering data, taken with the H1 detector at HERA, are used to study the event shape variables thrust, jet broadening and jet mass in the current hemisphere of the Breit frame over a large range of momentum transfers Q between 7 GeV and 100 GeV. The data are compared with results from e^+e^- experiments. Using second order QCD calculations and an approach to relate hadronisation effects to power corrections an analysis of the Q dependences of the means of the event shape parameters is presented, from which both the power corrections and the strong coupling constant are determined without any assumption on fragmentation models. The power corrections of all event shape variables investigated follow a 1/Q behaviour and can be described by a common parameter alpha_0.

6 data tables

The data on the differential event shape distrubutions are shown only as a illustration to show the agreement with the Lepto and pQCD calculations and contain only statistical errors. The authors are preparing another paper which details these differential distributions including full point-to-point systematics.

Usual definition of Thrust.

The same as usual thrust definition but with the thrust axis replaced by the current hemisphere axis (0,0,-1), where positive Z direction coincide with theincoming proton beam direction.

More…

Measurement of leading proton and neutron production in deep inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 6 (1999) 587-602, 1999.
Inspire Record 478983 DOI 10.17182/hepdata.44169

Deep--inelastic scattering events with a leading baryon have been detected by the H1 experiment at HERA using a forward proton spectrometer and a forward neutron calorimeter. Semi--inclusive cross sections have been measured in the kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T <= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV, or a neutron with energy E' >= 160 GeV. The measurements are used to test production models and factorization hypotheses. A Regge model of leading baryon production which consists of pion, pomeron and secondary reggeon exchanges gives an acceptable description of both semi-inclusive cross sections in the region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading neutron data are used to estimate for the first time the structure function of the pion at small Bjorken--x.

10 data tables

Semi-inclusive structure function for data with forward proton.

Semi-inclusive structure function for data with forward proton.

Semi-inclusive structure function for data with forward proton.

More…

Proton dissociative rho and elastic phi electroproduction at HERA

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Z.Phys.C 75 (1997) 607-618, 1997.
Inspire Record 443293 DOI 10.17182/hepdata.44590

The electroproduction of rho mesons with proton diffractive dissociation for Q^2 > 7 GeV^2 and the elastic electroproduction of Phi mesons for Q^2 > 6 Gev^2 are studied in e^+ p collisions at HERA with the H1 detector, for an integrated luminosity of 2.8 pb-1. The dependence of the cross sections on P_t^2 and Q^2 is measured, and the vector meson polarisation obtained. The cross section ratio between proton dissociative and elastic production of rho mesons is measured and discussed in the framework of the factorisation hypothesis of diffractive vertices. The ratio of the elastic cross section for Phi and rho meson production is investigated as a function of Q^2.

11 data tables

Corrected PT**2 distribution for RHO production from the proton dissociative sample. Statistical errors only.

Cross sections and ratio of proton dissociative to elastic cross sections.

Cross sections and ratio of proton dissociative to elastic cross sections.

More…

Inclusive measurement of diffractive deep inelastic ep scattering

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Z.Phys.C 76 (1997) 613-629, 1997.
Inspire Record 447269 DOI 10.17182/hepdata.44502

A measurement is made of the cross section for the process ep --> eXY in deep-inelastic scattering with the H1 detector at HERA. The cross section is presented in terms of a differential structure function F_2^D(3)(x_P,beta,Q^2) of the proton over the kinematic range 4.5 < Q^2 < 75 GeV^2. The dependence of F_2^D(3) on x_P is found to vary with beta, demonstrating that a factorisation of F_2^D(3) with a single diffractive flux independent of beta and Q^2 is not tenable. An interpretation in which a leading diffractive exchange and a subleading reggeon contribute to F_2^D(3) reproduces well the x_P dependence of F_2^D(3) with values for the pomeron and subleading reggeon intercepts of alpha_P(0)=1.203 \pm 0.020(stat.)\pm 0.013(sys.) ^{+0.030}_{-0.035}(model} and alpha_reg(0)=0.50\pm 0.11(stat.)\pm 0.11 (sys.}^{+0.09}_{-0.10} (model), respectively. A fit is performed of the data using a QCD motivated model, in which parton distributions are assigned to the leading and subleading exchanges. In this model, the majority of the momentum of the pomeron must be carried by gluons in order for the data to be well described.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Di-jet event rates in deep-inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 13 (2000) 415-426, 2000.
Inspire Record 472305 DOI 10.17182/hepdata.44322

Di-jet event rates have been measured for deep-inelastic scattering in the kinematic domain ~5 < Q^2 < ~100 GeV^2 and ~10^(-4) < x_Bj < ~10^(-2), and for jet transverse momenta squared p_t^2 > ~Q^2. The analysis is based on data collected with the H1 detector at HERA in 1994 corresponding to an integrated luminosity of about 2 pb^(-1). Jets are defined using a cone algorithm in the photon-proton centre of mass system requiring jet transverse momenta of at least 5 GeV. The di-jet event rates are shown as a function of Q^2 and x_Bj. Leading order models of point-like interacting photons fail to describe the data. Models which add resolved interacting photons or which implement the colour dipole model give a good description of the di-jet event rate. This is also the case for next-to-leading order calculations including contributions from direct and resolved photons.

4 data tables

Di-jet rates for 'Symmetric' and 'Asymmetric' scenarios for jet energy cuts.

Di-jet rates for 'Sum' scenario for jet energy cuts.

Di-jet rates for 'Symmetric' and 'Asymmetric' scenarios for jet energy cuts.

More…

Measurement of the inclusive di-jet cross section in photoproduction and determination of an effective parton distribution in the photon.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Eur.Phys.J.C 1 (1998) 97-107, 1998.
Inspire Record 448035 DOI 10.17182/hepdata.44511

The double-differential inclusive di-jet cross section in photoproduction processes is measured with the H1 detector at HERA. The cross section is determined as a function of the average transverse jet energy E_T^jets for ranges of the fractional energy x_gamma^jets of the parton from the photon side. An effective leading order parton distribution in the photon is determined at large parton fractional energies for scales between 80<p_T^2<1250 GeV^2. The measurement is compatible with the logarithmic scale dependence that is predicted by perturbative QCD.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Diffractive dijet production at HERA

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 6 (1999) 421-436, 1999.
Inspire Record 474949 DOI 10.17182/hepdata.44206

Interactions of the type ep -> eXY are studied, where the component X of the hadronic final state contains two jets and is well separated in rapidity from a leading baryonic system Y. Analyses are performed of both resolved and direct photoproduction and of deep-inelastic scattering with photon virtualities in the range 7.5 < Q^2 < 80 GeV^2. Cross sections are presented where Y has mass M_Y < 1.6 GeV, the squared four-momentum transferred at the proton vertex satisfies |t| < 1 GeV^2 and the two jets each have transverse momentum p^jet_T > 5 GeV relative to the photon direction in the rest frame of X. Models based on a factorisable diffractive exchange with a gluon dominated structure, evolved to a scale set by the transverse momentum p^hat_T of the outgoing partons from the hard interaction, give good descriptions of the data. Exclusive qqbar production, as calculated in perturbative QCD using the squared proton gluon density, represents at most a small fraction of the measured cross section. The compatibility of the data with a breaking of diffractive factorisation due to spectator interactions in resolved photoproduction is investigated.

6 data tables

Transverse momentum distribution for two jet production in photoproduction events (one entry per jet).

Transverse momentum distribution for two jet production in DIS events (one entry per jet).

Differential pseudo rapidity distribution in the lab frame for photoproduction data (one entry per jet).

More…

A measurement of the proton structure function F2(x,Q**2) at low x and low Q**2 at HERA.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 497 (1997) 3-30, 1997.
Inspire Record 441392 DOI 10.17182/hepdata.44625

The results of a measurement of the proton structure function F_2(x,Q~2)and the virtual photon-proton cross section are reported for momentum transfers squared Q~2 between 0.35 GeV~2 and 3.5 GeV~2 and for Bjorken-x values down to 6 10~{-6} using data collected by the HERA experiment H1 in 1995. The data represent an increase in kinematic reach to lower x and Q~2 values of about a factor of 5 compared to previous H1 measurements. Including measurements from fixed target experiments the rise of F_2 with decreasing x is found to be less steep for the lowest Q~2 values measured. Phenomenological models at low Q~2 are compared with the data.

18 data tables

No description provided.

No description provided.

No description provided.

More…

Multiplicity structure of the hadronic final state in diffractive deep-inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 5 (1998) 439-452, 1998.
Inspire Record 469495 DOI 10.17182/hepdata.44363

The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.

10 data tables

The multiplicity moment MULT as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.

The multiplicity moment DISPERSION as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.

The multiplicity moment R2 as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.

More…

Evolution of e p fragmentation and multiplicity distributions in the Breit frame.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 504 (1997) 3-23, 1997.
Inspire Record 445116 DOI 10.17182/hepdata.44587

Low x deep-inelastic ep scattering data, taken in 1994 at the H1 detector at HERA, are analysed in the Breit frame of reference. The evolution of the peak and width of the current hemisphere fragmentation function is presented as a function of Q and compared with e+e- results at equivalent centre of mass energies. Differences between the average charged multiplicity and the multiplicity of e+e- annihilations at low energies are analysed. Invariant energy spectra are compared with MLLA predictions. Distributions of multiplicity are presented as functions of Bjorken-x and Q^2, and KNO scaling is discussed.

25 data tables

The current hemisphere fragmentation as a function of XP in the Breit frame.

The current hemisphere fragmentation as a function of LN(1/XP) in the Breitframe.

Current hemisphere fragmentation as a function of Q for the XP range 0.02 to 0.05, to show scaling violations.

More…