Showing 6 of 6 results
A search for supersymmetric partners of top quarks decaying as $\tilde{t}_1\to c\tilde\chi^0_1$ and supersymmetric partners of charm quarks decaying as $\tilde{c}_1\to c\tilde\chi^0_1$, where $\tilde\chi^0_1$ is the lightest neutralino, is presented. The search uses 36.1 ${\rm fb}^{-1}$ $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to $c\tilde\chi^0_1$, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For $m_{\tilde{t}_1,\tilde{c}_1}-m_{\tilde\chi^0_1}
Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR1 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR2 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR3 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR4 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR5 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for the best expected SR in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Minimum branching ratio excluded at 95% CL, assuming no sensitivity for other decay possibilities, in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
The signal region with the best expected CLS value for each signal in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR1. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR2. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR3. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR4. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR5. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (450,425)$ GeV signal point for signal region SR1.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,420)$ GeV signal point for signal region SR2.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,350)$ GeV signal point for signal region SR3.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (600,350)$ GeV signal point for signal region SR4.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (900,1)$ GeV signal point for signal region SR5.
A search for pair production of a scalar partner of the top quark in events with four or more jets plus missing transverse momentum is presented. An analysis of 36.1 fb$^{-1}$ of $\sqrt{s}$=13 TeV proton-proton collisions collected using the ATLAS detector at the LHC yields no significant excess over the expected Standard Model background. To interpret the results a simplified supersymmetric model is used where the top squark is assumed to decay via $\tilde{t}_1 \rightarrow t^{(*)} \tilde\chi^0_1$ and $\tilde{t}_1\rightarrow b\tilde\chi^\pm_1 \rightarrow b W^{(*)} \tilde\chi^0_1$, where $\tilde\chi^0_1$ ($\chi^\pm_1$) denotes the lightest neutralino (chargino). Exclusion limits are placed in terms of the top-squark and neutralino masses. Assuming a branching ratio of 100% to $t \tilde\chi^0_1$, top-squark masses in the range 450-950 GeV are excluded for $\tilde\chi^0_1$ masses below 160 GeV. In the case where $m_{\tilde{t}_1}\sim m_t+m_{\tilde\chi^0_1}$, top-squark masses in the range 235-590 GeV are excluded.
Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T2}^{\chi^2}$ for SRA-T0 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRB-TW after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $R_\text{ISR}$ for SRC1-5 after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $m_\text{T}^{b,\text{max}}$ for SRD-high after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Distribution of $H_\text{T}$ for SRE after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.
Expected (blue solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Observed (red solid line) exclusion limits at 95% CL as a function of stop and LSP masses in the scenario where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses and branching fraction to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ in the Natural SUSY-inspired mixed grid scenario where $m_{\tilde{\chi^{\pm}_{1}}}=m_{\tilde{\chi^{0}_{1}}}$+1 GeV.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a large tan$\beta$ assumption.
Expected exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Observed exclusion limits at 95% CL as a function of $m_{\tilde{t}}$ and $m_{\tilde{\chi^{0}_{1}}}$ for the pMSSM-inspired non-asymptotic Higgsino simplified model for a small right-handed top-squark mass parameter assumption.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a negative value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for the Wino NLSP pMSSM model for a positive value of $\mu$.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the left-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Observed exclusion limits at 95% CL as a function of $\tilde{t}$ and $\tilde{\chi^{0}_{1}}$ masses for for the right-handed top-squark mass parameter scan in the well-tempered pMSSM model.
Expected exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Observed exclusion limits at 95% CL exclusion as a function of $\tilde{g}$ and $\tilde{t}$ masses in the scenario where both gluinos decay via $\tilde{g}\to t \tilde{t}\to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Results of the exclusion fits for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ from the combination of SRA, SRB, SRC, SRD and SRE, based on the best expected $CL_s$. The numbers centered on the grid points indicate which of the signal regions gave the best expected $CL_s$ (with 1, 2, 3, 4, 5, 6 corresponding to SRA, SRB, SRC, SRD-low,SR D-high, SRE respectively).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 25%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 50%. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the grid with two stop decay channels: $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV. The results are shown as a function of the branching ratio to $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$: 0 (top left), 25% (top right), 50% (middle left), 75% middle right) and 100% (bottom). The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRC, SRD-low and SRD-high, The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high, 5: SRC).
Results of the exclusion fits in the wino NLSP grid for negative values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the wino NLSP grid for positive values of $\mu$. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{q3L}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the well-tempered neutralino grid for the $m_{tR}$ scenario. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 4: SRD-low, 5: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with large tan$\beta$ (top left) is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenarios with small tan$\beta$ are shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Results of the exclusion fits in the non-asymptotic higgsino grid with $m(\tilde{\chi^{\pm}_{1}}) - m(\tilde{\chi^{0}_{1}}) = 5$ GeV. A scenario with a mostly right-handed top squark partner is shown. The results are based on taking the signal region with the best expected $CL_s$, using SRA, SRB, SRD-low and SRD-high, where SRA and SRB are the statistical combinations of their respective regions. The numbers centered on the grid points indicate the signal region used (1: SRA, 2: SRB, 3: SRD-low, 4: SRD-high).
Acceptance for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Acceptance for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Acceptance for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Efficiencies for SRA-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TT for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRE for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-TW for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRA-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRB-T0 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC1 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC2 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC3 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC4 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRC5 for top squark pair production in the case where both top squarks decay via $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$.
Efficiencies for SRD-low for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRD-high for the natural SUSY-inspired mixed grid in which two decay modes are considered, the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ and $\tilde{t}\to b \tilde{\chi^{\pm}_{1}} \to b W^{(*)} \tilde{\chi^{0}_{1}}$, with $m(\tilde{\chi^{\pm}_{1}})-m(\tilde{\chi^{0}_{1}}) = 1$ GeV.
Efficiencies for SRE for gluino pair production in the case where both gluinos decay via $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft and $\Delta m(\tilde{t},\tilde{\chi^{0}_{1}})=5$ GeV.
Upper limit cross-section, in femtobarn, for the $\tilde{t}\to t^{(*)} \tilde{\chi^{0}_{1}}$ grid.
Upper limit cross-section, in femtobarn, for the $\tilde{g}\to t \tilde{t} \to t\tilde{\chi^{0}_{1}}+$soft grid.
Cutflow for SRA for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (800,1) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow SRB for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (600,300) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC1 and SRC2 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (250,77) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRC3, SRC4, and SRC5 for a signal model with top squark pair production in the case where both top squarks decay via $\tilde{t}_1\to t^{(*)} \tilde\chi^0_1$ with $m(\tilde{t}_1,\tilde\chi^0_1)=$ (500,327) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-high for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV with $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (750,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRD-low for a signal model with bottom squark pair production in the case where both bottom squarks decay via $b\tilde\chi^{\pm}_1\to bW^{(*)} \tilde\chi^0_1$, with $m(\tilde\chi^{\pm}_1)-m(\tilde\chi^0_1) = 1$ GeV witht $m(\tilde{b}_1,\tilde\chi^{\pm}_1)=$ (400,200) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
Cutflow for SRE for a signal model with gluino pair production in the case where both gluinos decay via $\tilde{g}\to t\tilde{t}_1\to t\tilde\chi^0_1+$soft and $\Delta m(\tilde{t}_1, \tilde\chi^0_1)=5$ GeV with $m(\tilde{g},\tilde{t}_1)=$ (1700,400) GeV. An integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ is assumed when calculating the weighted yields. For the derivation skim at least one of the following four criteria is required: $H_{\mathrm{T}}$ $>$ 150 GeV; at least one loose electron with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two loose electrons with $p_{\mathrm{T}}$ $>$ 20 GeV; at least one muon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two muons with $p_{\mathrm{T}}$ $>$ 20 GeV; or at least one photon with $p_{\mathrm{T}}$ $>$ 100 GeV or at least two photons with $p_{\mathrm{T}}$ $>$ 50 GeV.
The results of a search for the stop, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, jets, and missing transverse momentum are reported. The search uses the 2015 LHC $pp$ collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded by the ATLAS detector and corresponding to an integrated luminosity of 3.2 fb${}^{-1}$. The analysis targets two types of signal models: gluino-mediated pair production of stops with a nearly mass-degenerate stop and neutralino; and direct pair production of stops, decaying to the top quark and the lightest neutralino. The experimental signature in both signal scenarios is similar to that of a top quark pair produced in association with large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits on gluino and stop masses are set at 95% confidence level. The results extend the LHC Run-1 exclusion limit on the gluino mass up to 1460 GeV in the gluino-mediated scenario in the high gluino and low stop mass region, and add an excluded stop mass region from 745 to 780 GeV for the direct stop model with a massless lightest neutralino. The results are also reinterpreted to set exclusion limits in a model of vector-like top quarks.
Comparison of data with estimated backgrounds in the $am_\text{T2}$ distribution with the STCR1 event selection except for the requirement on $am_\text{T2}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $b$-tagged jet multiplicity with the STCR1 event selection except for the requirement on the $b$-tagged jet multiplicity. Furthermore, the $\Delta R(b_1,b_2)$ requirement is dropped. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $\Delta R(b_1,b_2)$ distribution with the STCR1 event selection except for the requirement on $\Delta R(b_1,b_2)$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $\tilde{E}_\text{T}^\text{miss}$ distribution with the TZCR1 event selection except for the requirement on $\tilde{E}_\text{T}^\text{miss}$. The variables $\tilde{E}_\text{T}^\text{miss}$ and $\tilde{m}_\text{T}$ are constructed in the same way as $E_\text{T}^\text{miss}$ and $m_\text{T}$ but treating the leading photon transverse momentum as invisible. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $\tilde{m}_\text{T}$ distribution with the TZCR1 event selection except for the requirement on $\tilde{m}_\text{T}$. The variables $\tilde{E}_\text{T}^\text{miss}$ and $\tilde{m}_\text{T}$ are constructed in the same way as $E_\text{T}^\text{miss}$ and $m_\text{T}$ but treating the leading photon transverse momentum as invisible. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of the observed data ($n_\text{obs}$) with the predicted background ($n_\text{exp}$) in the validation and signal regions. The background predictions are obtained using the background-only fit configuration. The bottom panel shows the significance of the difference between data and predicted background, where the significance is based on the total uncertainty ($\sigma_\text{tot}$).
Jet multiplicity distributions for events where exactly two signal leptons are selected. No correction factors are included in the background normalizations. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Jet multiplicity distributions for events where exactly one lepton plus one $\tau$ candidate are selected. No correction factors are included in the background normalizations. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
The $E_\text{T}^\text{miss}$ distribution in SR1. In the plot, the full event selection in the corresponding signal region is applied, except for the requirement on $E_\text{T}^\text{miss}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin contains the overflow. Benchmark signal models are overlaid for comparison. The benchmark models are specified by the gluino and stop masses, given in TeV in the table.
The $m_\text{T}$ distribution in SR1. In the plot, the full event selection in the corresponding signal region is applied, except for the requirement on $m_\text{T}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin contains the overflow. Benchmark signal models are overlaid for comparison. The benchmark models are specified by the gluino and stop masses, given in TeV in the table.
Expected (black dashed) 95% excluded regions in the plane of $m_{\tilde{g}}$ versus $m_{\tilde{t}_1}$ for gluino-mediated stop production.
Observed (red solid) 95% excluded regions in the plane of $m_{\tilde{g}}$ versus $m_{\tilde{t}_1}$ for gluino-mediated stop production.
Expected (black dashed) 95% excluded regions in the plane of $m_{\tilde{t}_1}$ versus $m_{\tilde{\chi}_1^0}$ for direct stop production.
Observed (red solid) 95% excluded regions in the plane of $m_{\tilde{t}_1}$ versus $m_{\tilde{\chi}_1^0}$ for direct stop production.
The expected upper limits on $T$ quark pair production times the squared branching ratio for $T \rightarrow tZ$ as a function of the $T$ quark mass.
The observed upper limits on $T$ quark pair production times the squared branching ratio for $T \rightarrow tZ$ as a function of the $T$ quark mass.
The expected limits on $T$ quarks as a function of the branching ratios $B\left(T \rightarrow bW\right)$ and $B\left(T \rightarrow tH\right)$ for a $T$ quark with a mass of 800 GeV. The $T$ is assumed to decay in three possible ways: $T \to tZ$, $T \to tH$, and $T \to bW$.
The observed limits on $T$ quarks as a function of the branching ratios $B\left(T \rightarrow bW\right)$ and $B\left(T \rightarrow tH\right)$ for a $T$ quark with a mass of 800 GeV. The $T$ is assumed to decay in three possible ways: $T \to tZ$, $T \to tH$, and $T \to bW$.
The $m_\text{T}$ distribution in the WVR2-tail validation region which has the same preselection and jet $p_\text{T}$ requirements as SR2.
The $am_\text{T2}$ distribution in the WVR2-tail validation region which has the same preselection and jet $p_\text{T}$ requirements as SR2.
Large-radius jet mass ($R=1.2$), decomposed into the number of small-radius jet constituents. The lower panel shows the ratio of the total data to the total prediction (summed over all jet multiplicities). Events are required to have one lepton, four jets with $p_\text{T}>80,50,40,40$ GeV, at least one $b$-tagged jet, $E_\text{T}^\text{miss}>200$ GeV, and $m_\text{T}>30$ GeV.
Distribution of $m_\text{T2}^\tau$ in data for a selection enriched in $t\bar{t}$ events with one hadronically decaying $\tau$. Events that have no hadronic $\tau$ candidate (that passes the Loose identification criteria, as well as other requirements) are not shown in the plot.
Upper limits on the model cross-section in units of pb for the gluino-mediated stop models.
Upper limits on the model cross-section in units of pb for the models with direct stop pair production.
Illustration of the best expected signal region per signal grid point for the gluino-mediated stop models. This mapping is used for the final combined exclusion limits.
Illustration of the best expected signal region per signal grid point for models with direct stop pair production. This mapping is used for the final combined exclusion limits.
Expected $CL_s$ values for the gluino-mediated stop models.
Observed $CL_s$ values for the gluino-mediated stop models.
Expected $CL_s$ values for the direct stop pair production models.
Observed $CL_s$ values for the direct stop pair production models.
Expected limit using SR1 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Expected limit using SR1 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Expected limit using SR1 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Observed limit using SR1 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Observed limit using SR1 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Observed limit using SR1 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Expected limit using SR2 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Expected limit using SR2 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Expected limit using SR2 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Observed limit using SR2 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Observed limit using SR2 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Observed limit using SR2 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Expected limit using SR1+SR2 (best expected) for models with direct stop pair production and an unpolarized stop (and bino LSP).
Expected limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Expected limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Observed limit using SR1+SR2 (best expected) for models with direct stop pair production and an unpolarized stop (and bino LSP).
Observed limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Observed limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Acceptance for SR1 in the gluino-mediated stop models. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR1 in the direct stop pair production. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR2 in the gluino-mediated stop models. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR2 in the direct stop pair production. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR3 in the gluino-mediated stop models. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR3 in the direct stop pair production. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Efficiency for SR1 in the gluino-mediated stop models. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR1 in the direct stop pair production. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR2 in the gluino-mediated stop models. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR2 in the direct stop pair production. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR3 in the gluino-mediated stop models. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR3 in the direct stop pair production. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
The results of a search for gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton--proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV are presented. The dataset used was recorded in 2015 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Six signal selections are defined that best exploit the signal characteristics. The data agree with the Standard Model background expectation in all six signal selections, and the largest deviation is a 2.1 standard deviation excess. The results are interpreted in a simplified model where pair-produced gluinos decay via the lightest chargino to the lightest neutralino. In this model, gluinos are excluded up to masses of approximately 1.6 TeV depending on the mass spectrum of the simplified model, thus surpassing the limits of previous searches.
The distribution of the missing transverse momentum is shown in hard-lepton 6-jet ttbar control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
The distribution of the missing transverse momentum is shown in hard-lepton 6-jet W+jets control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
The distribution of the missing transverse momentum is shown in soft-lepton 2-jet ttbar control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
The distribution of the missing transverse momentum is shown in soft-lepton 2-jet W+jets control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
Expected background yields as obtained in the background-only fits in all hard-lepton and soft-lepton validation together with observed data are given. Uncertainties in the fitted background estimates combine statistical (in the simulated event yields) and systematic uncertainties.
Expected background yields as obtained in the background-only fits in all hard-lepton and soft-lepton signal together with observed data are given. Uncertainties in the fitted background estimates combine statistical (in the simulated event yields) and systematic uncertainties.
Distributions of mt for the hard-lepton 4-jet low-x signal region. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Section 7. The component `Others' is the sum of Z+jets and ttbar+V. The last bin includes the overflow.
Distributions of met/meff for the 4-jet high-x signal region. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Section 7. The component `Others' is the sum of Z+jets and ttbar+V. The last bin includes the overflow.
Distributions of mt for the hard-lepton 5-jet signal region. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Section 7. The component `Others' is the sum of Z+jets and ttbar+V. The last bin includes the overflow.
Distributions of mt for the hard-lepton 6-jet signal region. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Section 7. The component `Others' is the sum of Z+jets and ttbar+V. The last bin includes the overflow.
Distributions of met for the soft-lepton 2-jet signal region. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Section 7. The component `Others' is the sum of Z+jets and ttbar+V. The last bin includes the overflow.
Distributions of met for the soft-lepton 5-jet signal region. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Section 7. The component `Others' is the sum of Z+jets and ttbar+V. The last bin includes the overflow.
The observed combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The expected combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The yellow band ($+ 1 \sigma$) of the combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models. The yellow band represents the $\pm 1 \sigma$ variation of the median expected limit due to the experimental and theoretical uncertainties.
The yellow band ($- 1 \sigma$) of the combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models. The yellow band represents the $\pm 1 \sigma$ variation of the median expected limit due to the experimental and theoretical uncertainties.
The observed combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The expected combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The yellow band ($+ 1 \sigma$) of the combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$. The yellow band represents the $\pm 1 \sigma$ variation of the median expected limit due to the experimental and theoretical uncertainties.
The yellow band ($- 1 \sigma$) of the combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$. The yellow band represents the $\pm 1 \sigma$ variation of the median expected limit due to the experimental and theoretical uncertainties.
The observed limits for the soft-lepton 2-jet signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The expected limits for the soft-lepton 2-jet signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The observed limits for the hard-lepton 4-jet low-x signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The expected limits for the hard-lepton 4-jet low-x signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The observed limits for the hard-lepton 5-jet signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The expected limits for the hard-lepton 5-jet signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The observed limits for the hard-lepton 6-jet signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The expected limits for the hard-lepton 6-jet signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The observed limits for the soft-lepton 5-jet signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The expected limits for the soft-lepton 5-jet signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The observed limits for the hard-lepton 4-jet low-x signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The expected limits for the hard-lepton 4-jet low-x signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The observed limits for the hard-lepton 4-jet high-x signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The expected limits for the hard-lepton 4-jet high-x signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The observed limits for the hard-lepton 5-jet signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The expected limits for the hard-lepton 5-jet signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The observed limits for the hard-lepton 6-jet signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The expected limits for the hard-lepton 6-jet signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
Number of generated events in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$.
Number of generated events in the (gluino, x) plane for the chargino = 60 GeV models.
Production cross-section in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$.
Production cross-section in the (gluino, x) plane for the chargino = 60 GeV models.
Acceptance times efficiency obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 4-jet low-x).
Acceptance times efficiency in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 4-jet high-x).
Acceptance times efficiency in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 5-jet).
Acceptance times efficiency in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 6-jet).
Acceptance times efficiency in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (soft-lepton 2-jet).
Acceptance times efficiency obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 4-jet low-x).
Acceptance times efficiency in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 4-jet high-x).
Acceptance times efficiency in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 5-jet).
Acceptance times efficiency in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 6-jet).
Acceptance times efficiency in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (soft-lepton 5-jet).
The observed CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 4-jet low-x).
The observed CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 4-jet high-x).
The observed CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 5-jet).
The observed CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 6-jet).
The observed CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (soft-lepton 2-jet).
The expected CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 4-jet low-x).
The expected CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 4-jet high-x).
The expected CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 5-jet).
The expected CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 6-jet).
The expected CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (soft-lepton 2-jet).
The observed CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 4-jet low-x).
The observed CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 4-jet high-x).
The observed CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 5-jet).
The observed CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 6-jet).
The observed CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (soft-lepton 5-jet).
The expected CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 4-jet low-x).
The expected CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 4-jet high-x).
The expected CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 5-jet).
The expected CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 6-jet).
The expected CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (soft-lepton 5-jet).
The signal region yielding in the best expected limit is indicated for every signal point used in the the gluino simplified models for the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$.
The signal region yielding in the best expected limit is indicated for every signal point used in the the gluino simplified models for the (gluino, x) mass plane where for the chargino = 60 GeV and $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
Model-dependent 95% CL upper limits on the visible cross-section in addition to the observed and expected exclusion limits for the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$.
Model-dependent 95% CL upper limits on the visible cross-section in addition to the observed and expected exclusion limits for the (gluino, x) mass plane where for the chargino = 60 GeV and $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
Simulated background event samples: the corresponding generator, parton shower, cross-section normalisation, PDF set and underlying-event tune are shown.
Overview of the selection criteria for the soft-lepton signal regions. The symbol $p_{T}^{l}$ refers to signal leptons.
Overview of the selection criteria for the hard-lepton signal regions. The symbol $p_{T}^{l}$ refers to signal leptons.
Background fit results for the hard-lepton and soft-lepton signal regions, for an integrated luminosity of 3.2 fb-1. Uncertainties in the fitted background estimates combine statistical (in the simulated event yields) and systematic uncertainties. The uncertainties in this table are symmetrised for propagation purposes but truncated at zero to remain within the physical boundaries.
Breakdown of upper limits. The columns show from left to right: the name of the respective signal region; the 95% confidence level (CL) upper limits on the visible cross-section and on the number of signal events the 95% CL upper limit on the number of signal events, given the expected number (and $\pm 1 \sigma$ variations on the expectation) of background events; the two-sided CLb value, i.e. the confidence level observed for the background-only hypothesis and the one-sided discovery p-value (p(s = 0)). The discovery p-values are capped to 0.5 in the case of observing less events than the fitted background estimates.
Table shows the data, fitted background and expected signal event counts for a benchmark signal point in each bin of the mt distribution shown in figure 5 (top left). The fit results are shown for an integrated luminosity of 3.2 fb-1.
Table shows the data, fitted background and expected signal event counts for a benchmark signal point in each bin of the met/meff distribution shown in figure 5 (top right). The fit results are shown for an integrated luminosity of 3.2 fb-1.
Table shows the data, fitted background and expected signal event counts for a benchmark signal point in each bin of the mt distribution shown in figure 5 (middle left). The fit results are shown for an integrated luminosity of 3.2 fb-1.
Table shows the data, fitted background and expected signal event counts for a benchmark signal point in each bin of the mt distribution shown in figure 5 (middle right). The fit results are shown for an integrated luminosity of 3.2 fb-1.
Table shows the data, fitted background and expected signal event counts for a benchmark signal point in each bin of the met distribution shown in figure 5 (bottom left). The fit results are shown for an integrated luminosity of 3.2 fb-1.
Table shows the data, fitted background and expected signal event counts for a benchmark signal point in each bin of the met distribution shown in figure 5 (bottom right). The fit results are shown for an integrated luminosity of 3.2 fb-1.
Cutflow table for the hard-lepton signal regions with representative target signal models. The weighted numbers are normalized to 3.2 fb-1 and rounded to the statistical error.
Cutflow table for the hard-lepton signal regions with representative target signal models. The weighted numbers are normalized to 3.2 fb-1 and rounded to the statistical error.
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider (LHC) are reported. The search is based on proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 8$ TeV collected in 2012, corresponding to an integrated luminosity of 20 fb$^{-1}$. No significant excess above the Standard Model expectation is observed. Limits are set on the parameters of a minimal universal extra dimensions model, excluding a compactification radius of $1/R_c=950$ GeV for a cut-off scale times radius ($\Lambda R_c$) of approximately 30, as well as on sparticle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet inclusive signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}$ distribution in soft dimuon signal region. The last bin includes the overflow.
Observed and expected $m_{eff}^{incl}$ distribution in hard single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $m_{eff}^{incl}$ distribution for hard single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_{T}^{miss}$ distribution for hard single-lepton 6-jet signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard same-flavour dilepton low-multiplicity signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard same-flavour dilepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard opposite-flavour dilepton low-multiplicity signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard opposite-flavour dilepton 3-jet opposite-flavour signal region. The last bin includes the overflow.
Observed 95% exclusion contour for the mSUGRA/CMSSM model with $\tan\beta=30$, $A_{0}=-2m_{0}$ and $\mu > 0$.
Expected 95% exclusion contour for the mSUGRA/CMSSM model with $\tan\beta=30$, $A_{0}=-2m_{0}$ and $\mu > 0$.
Observed 95% exclusion contour for the bRPV MSUGRA/CMSSM model.
Expected 95% exclusion contour for the bRPV MSUGRA/CMSSM model.
Observed 95% exclusion contour for the natural gauge mediation with a stau NLSP model (nGM).
Expected 95% exclusion contour for the natural gauge mediation with a stau NLSP model (nGM).
Observed 95% exclusion contour for the non-universal higgs masses with gaugino mediation model (NUHMG).
Expected 95% exclusion contour for the non-universal higgs masses with gaugino mediation model (NUHMG).
Observed 95% exclusion contour for the minimal UED model from the combination of the hard dilepton and soft dilepton analyses.
Expected 95% exclusion contour for the minimal UED model from the combination of the hard dilepton and soft dilepton analyses.
Observed 95% exclusion contour for the minimal UED model from the hard dilepton analysis.
Expected 95% exclusion contour for the minimal UED model from the hard dilepton analysis.
Observed 95% exclusion contour for the minimal UED model from the soft dilepton analysis.
Expected 95% exclusion contour for the minimal UED model from the soft dilepton analysis.
Observed 95% exclusion contour for the simplified model with gluino-mediated top squark production where the top squark is assumed to decay exclusively via $\tilde{t} \rightarrow c \tilde{\chi}^{0}_{1}$.
Expected 95% exclusion contour for the simplified model with gluino-mediated top squark production, where the top squark is assumed to decay exclusively via $\tilde{t} \rightarrow c \tilde{\chi}^{0}_{1}$.
Observed 95% exclusion contour for the simplified model with gluino-mediated top squark production where the gluinos are assumed to decay exclusively through a virtual top squark, $\tilde{g} \rightarrow tt+\tilde{\chi}^{0}_{1}$.
Expected 95% exclusion contour for the simplified model with gluino-mediated top squark production where the gluinos are assumed to decay exclusively through a virtual top squark, $\tilde{g} \rightarrow tt+\tilde{\chi}^{0}_{1}$.
Observed 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the soft single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the soft single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the hard single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the hard single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the soft single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the soft single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the gluino simplified model from the hard single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the hard single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the gluino simplified model from the soft single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the soft single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the combination of soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the soft single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the soft single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the combination of the hard dilepton and hard single-lepton analyses.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the combination of the hard dilepton and hard single-lepton analyses.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard single-lepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard single-lepton analysis.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard dilepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard dilepton analysis.
Observed 95% exclusion contour for the two-step first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Expected 95% exclusion contour for the two-step first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Observed 95% exclusion contour for the two-step gluino simplified model without sleptons from the hard single-lepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model without sleptons from the hard single-lepton analysis.
Number of generated events in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Production cross-section in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Number of generated events in the the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV. squark decaying to quark neutralino1 with varying x.
Production cross-section in the the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Number of generated evens in the minimal UED model.
Production cross-section in the minimal UED model in pb.
Number of generated events in the two-step first- and second-generation squark simplified model with sleptons.
Production cross-section in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for soft single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for soft single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for soft single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for soft single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for soft single-lepton 3-jet inclusive signal region in the gluino simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for the soft single-lepton 3-jet inclusive signal region in the gluino simplified model for the case in x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is varied and the LSP mass is set at 60 GeV. The chargino mass is parameterised using x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)).
Observed CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is varied and the LSP mass is set at 60 GeV. The chargino mass is parameterised using x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)).
Acceptance for soft dimuon signal region in the minimal UED model (mUED).
Efficiency for soft dimuon signal region in minimal UED model (mUED).
Acceptance for hard dilepton 3-jet opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton 3jet opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton 3-jet same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton 3-jet same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton low-multiplicity opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton low-multiplicity opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton low-multiplicity same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton low-multiplicity same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Best expected signal region in the minimal UED model (mUED).
Expected CLs from hard dilepton analysis in the two-step first- and second-generation squark simplified model with sleptons.
Observed CLs from the hard dilepton analysis in the two-step first- and second-generation squark simplified model with sleptons.
Expected CLs from the combination of the soft dimuon and hard dilepton analyses in the minimal UED model (mUED).
Observed CLs from the combination of the soft dimuon and hard dilepton analyses in the minimal UED model (mUED).
Acceptance for hard single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 6-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 6-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 3-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 3-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Acceptance for hard single-lepton 5-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 5-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Acceptance for hard single-lepton 6-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 6-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% upper limit on the visible cross-section in the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% upper limit on the visible cross-section in the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% upper limit on the visible cross-section in the first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Observed 95% upper limit on the visible cross-section in the minimal UED model (mUED) from the combination of the soft dimuon and hard dilepton analyses.
The results of a search for top squark (stop) pair production in final states with one isolated lepton, jets, and missing transverse momentum are reported. The analysis is performed with proton--proton collision data at $\sqrt{s} = 8$ TeV collected with the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of $20$ fb$^{-1}$. The lightest supersymmetric particle (LSP) is taken to be the lightest neutralino which only interacts weakly and is assumed to be stable. The stop decay modes considered are those to a top quark and the LSP as well as to a bottom quark and the lightest chargino, where the chargino decays to the LSP by emitting a $W$ boson. A wide range of scenarios with different mass splittings between the stop, the lightest neutralino and the lightest chargino are considered, including cases where the $W$ bosons or the top quarks are off-shell. Decay modes involving the heavier charginos and neutralinos are addressed using a set of phenomenological models of supersymmetry. No significant excess over the Standard Model prediction is observed. A stop with a mass between $210$ and $640$ GeV decaying directly to a top quark and a massless LSP is excluded at $95$ % confidence level, and in models where the mass of the lightest chargino is twice that of the LSP, stops are excluded at $95$ % confidence level up to a mass of $500$ GeV for an LSP mass in the range of $100$ to $150$ GeV. Stringent exclusion limits are also derived for all other stop decay modes considered, and model-independent upper limits are set on the visible cross-section for processes beyond the Standard Model.
Expected and observed $H_{T,sig}^{miss}$ distribution for tN_med SR, before applying the $H_{T,sig}^{miss}>12$ requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed large-R jet mass distribution for tN_boost SR, before applying the large-R jet mass$>75$ GeV requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed b-jet multiplicity distribution for bCc_diag SR, before applying the b-jet multiplicity$=0$ requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed $am_{T2}$ distribution for bCd_high1 SR, before applying the $am_{T2}>200$ GeV requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed leading b-jet $p_T$ distribution for bCd_high2 SR, before applying the leading b-jet $p_T>170$ GeV requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed $E_T^{miss}$ distribution for tNbC_mix SR, before applying the $E_T^{miss}>270$ GeV requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed lepton $p_T$ distribution for bCa_low SR. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed lepton $p_T$ distribution for bCa_med SR. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed $am_T2$ distribution for bCb_med1 SR. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed $am_T2$ distribution for bCb_high SR. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Best expected signal region for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1$ three-body scenario ($\tilde t_1\to bW\chi^0_1$). This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1$ four-body scenario ($\tilde t_1\to bff'\chi^0_1$). This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=150$ GeV. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=106$ GeV. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+5$ GeV. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\tilde t_1}-10$ GeV. This mapping is used for the final combined exclusion limits.
Best expected signal region for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\tilde t_1}=300$ GeV. This mapping is used for the final combined exclusion limits.
Upper limits on the model cross-section for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Observed exclusion contour for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Expected exclusion contour for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Upper limit on signal events for the $\tilde t_1$ three-body scenario ($\tilde t_1\to bW\chi^0_1$).
Observed exclusion contour for the $\tilde t_1$ three-body scenario ($\tilde t_1\to bW\chi^0_1$).
Expected exclusion contour for the $\tilde t_1$ three-body scenario ($\tilde t_1\to bW\chi^0_1$).
Upper limit on signal events for the $\tilde t_1$ four-body scenario ($\tilde t_1\to bff'\chi^0_1$).
Observed exclusion contour for the $\tilde t_1$ four-body scenario ($\tilde t_1\to bff'\chi^0_1$).
Expected exclusion contour for the $\tilde t_1$ four-body scenario ($\tilde t_1\to bff'\chi^0_1$).
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=150$ GeV.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=150$ GeV.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=150$ GeV.
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=106$ GeV.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=106$ GeV.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=106$ GeV.
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+5$ GeV.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+5$ GeV.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+5$ GeV.
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\tilde t_1}-10$ GeV.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\tilde t_1}-10$ GeV.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\tilde t_1}-10$ GeV.
Upper limit on signal events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\tilde t_1}=300$ GeV.
Observed exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\tilde t_1}=300$ GeV.
Expected exclusion contour for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\tilde t_1}=300$ GeV.
Acceptance of tN_diag SR ($E_T^{miss}>150$ GeV, $m_T>140$ GeV) for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of tN_med SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of tN_boost SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCb_med2 SR ($am_{T2}>250$ GeV, $m_T>60$ GeV) for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCc_diag SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCd_bulk SR ($am_{T2}>175$ GeV, $m_T>120$ GeV) for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCd_high1 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCd_high2 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCa_med for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCa_low for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCb_med1 for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of bCb_high for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of 3-body SR ($80<am_{T2}<90$ GeV, $m_T>120$ GeV) for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$). The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance of tNbC_mix SR for the asymmetric scenario ($\tilde t_1$, $\tilde t_1\to t\chi^0_1$, b $\chi^\pm_1$) with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Efficiency of tN_diag SR ($E_T^{miss}>150$ GeV, $m_T>140$ GeV) for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of tN_med SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of tN_boost SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCb_med2 SR ($am_{T2}>250$ GeV, $m_T>60$ GeV) for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCc_diag SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCd_bulk SR ($am_{T2}>175$ GeV, $m_T>120$ GeV) for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCd_high1 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCd_high2 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCa_med for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCa_low for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCb_med1 for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of bCb_high for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of 3-body SR ($80<am_{T2}<90$ GeV, $m_T>120$ GeV) for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$). The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency of tNbC_mix SR for the asymmetric scenario ($\tilde t_1$, $\tilde t_1\to t\chi^0_1$, b $\chi^\pm_1$) with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Number of generated events for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Number of generated events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Number of generated events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV; $E_T^{miss}$(gen)$>60$ GeV.
Number of generated events for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV; $E_T^{miss}$(gen)$>250$ GeV.
Number of generated events for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$).
Number of generated events for the asymmetric scenario ($\tilde t_1$, $\tilde t_1\to t\chi^0_1$, b $\chi^\pm_1$) with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Cross-section for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Cross-section for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Cross-section for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Cross-section for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$).
Cross-section for the asymmetric scenario ($\tilde t_1$, $\tilde t_1\to t\chi^0_1$, b $\chi^\pm_1$) with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Combined experimental systematic uncertainty of expected tN_diag SR yields for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$, using the 2 highest $E_T^{miss}$ and 2 highest $m_T$ bins.
Combined experimental systematic uncertainty of expected tN_med SR yields for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Combined experimental systematic uncertainty of expected tN_boost SR yields for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Combined experimental systematic uncertainty of expected bCb_med2 SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$, using the 2 highest $am_{T2}$ and 2 highest $m_T$ bins.
Combined experimental systematic uncertainty of expected bCc_diag SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Combined experimental systematic uncertainty of expected bCd_bulk SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$, using the 2 highest $am_{T2}$ and 2 highest $m_T$ bins.
Combined experimental systematic uncertainty of expected bCd_high1 SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Combined experimental systematic uncertainty of expected bCd_high2 SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Combined experimental systematic uncertainty of expected bCa_med SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Combined experimental systematic uncertainty of expected bCa_low SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Combined experimental systematic uncertainty of expected bCb_med1 SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Combined experimental systematic uncertainty of expected bCb_high SR yields for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Combined experimental systematic uncertainty of expected 3-body SR yields for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$), using the 2 lowest $am_{T2}$ and 2 highest $m_T$ bins.
Combined experimental systematic uncertainty of expected tNbC_mix SR yields for the asymmetric scenario ($\tilde t_1$, $\tilde t_1\to t\chi^0_1$, b $\chi^\pm_1$) with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed CLs in tN_diag SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Observed CLs in tN_med SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Observed CLs in tN_boost SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Observed CLs in bCb_med2 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed CLs in bCc_diag SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed CLs in bCd_bulk SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed CLs in bCd_high1 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed CLs in bCd_high2 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Observed CLs in bCa_med SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Observed CLs in bCa_low SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Observed CLs in bCb_med1 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Observed CLs in bCb_high SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Observed CLs in 3-body SR for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$).
Observed CLs in tNbC_mix SR for the mixed scenario (50% $\tilde t_1\to t\chi^0_1$, 50% $\tilde t_1\to b\chi^0_1$).
Expected CLs in tN_diag SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Expected CLs in tN_med SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Expected CLs in tN_boost SR for the $\tilde t_1\to t\chi^0_1$ scenario with $m_{\tilde t_1}>m_t+m_{\chi^0_1}$.
Expected CLs in bCb_med2 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Expected CLs in bCc_diag SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Expected CLs in bCd_bulk SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Expected CLs in bCd_high1 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Expected CLs in bCd_high2 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=2\times m_{\chi^0_1}$.
Expected CLs in bCa_med SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Expected CLs in bCa_low SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Expected CLs in bCb_med1 SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Expected CLs in bCb_high SR for the $\tilde t_1\to b\chi^\pm_1$ scenario with $m_{\chi^\pm_1}=m_{\chi^0_1}+20$ GeV.
Expected CLs in 3-body SR for the 3-body scenario ($\tilde t_1\to b W\chi^0_1$).
Expected CLs in tNbC_mix SR for the mixed scenario (50% $\tilde t_1\to t\chi^0_1$, 50% $\tilde t_1\to b\chi^\pm_1$).
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.