Date

Collaboration

CM Energies (GeV) Reset

Two-particle Bose-Einstein correlations in pp collisions at ${\sqrt{s} = 13}$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 608, 2022.
Inspire Record 2027827 DOI 10.17182/hepdata.132012

This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.

154 data tables

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.

More…

Measurements of $W^+W^-+\ge 1~$jet production cross-sections in $pp$ collisions at $\sqrt{s}=13~$TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale Charles ; et al.
JHEP 06 (2021) 003, 2021.
Inspire Record 1852328 DOI 10.17182/hepdata.100511

Fiducial and differential measurements of $W^+W^-$ production in events with at least one hadronic jet are presented. These cross-section measurements are sensitive to the properties of electroweak-boson self-interactions and provide a test of perturbative quantum chromodynamics and the electroweak theory. The analysis is performed using proton$-$proton collision data collected at $\sqrt{s}=13~$TeV with the ATLAS experiment, corresponding to an integrated luminosity of 139$~$fb$^{-1}$. Events are selected with exactly one oppositely charged electron$-$muon pair and at least one hadronic jet with a transverse momentum of $p_{\mathrm{T}}>30~$GeV and a pseudorapidity of $|\eta|<4.5$. After subtracting the background contributions and correcting for detector effects, the jet-inclusive $W^+W^-+\ge 1~$jet fiducial cross-section and $W^+W^-+$ jets differential cross-sections with respect to several kinematic variables are measured, thus probing a previously unexplored event topology at the LHC. These measurements include leptonic quantities, such as the lepton transverse momenta and the transverse mass of the $W^+W^-$ system, as well as jet-related observables such as the leading jet transverse momentum and the jet multiplicity. Limits on anomalous triple-gauge-boson couplings are obtained in a phase space where interference between the Standard Model amplitude and the anomalous amplitude is enhanced.

55 data tables

Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.

Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 1168 GeV.

Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$

More…

Observation and measurement of forward proton scattering in association with lepton pairs produced via the photon fusion mechanism at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 261801, 2020.
Inspire Record 1820312 DOI 10.17182/hepdata.116547

The observation of forward proton scattering in association with lepton pairs ($e^+e^-+p$ or $\mu^+\mu^-+p$) produced via photon fusion is presented. The scattered proton is detected by the ATLAS Forward Proton spectrometer while the leptons are reconstructed by the central ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of $\sqrt{s} = 13$ TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb$^{-1}$. A total of 57 (123) candidates in the $ee+p$ ($\mu\mu+p$) final state are selected, allowing the background-only hypothesis to be rejected with a significance exceeding five standard deviations in each channel. Proton-tagging techniques are introduced for cross-section measurements in the fiducial detector acceptance, corresponding to $\sigma_{ee+p}$ = 11.0 $\pm$ 2.6 (stat.) $\pm$ 1.2 (syst.) $\pm$ 0.3 (lumi.) fb and $\sigma_{\mu\mu+p}$ = 7.2 $\pm$ 1.6 (stat.) $\pm$ 0.9 (syst.) $\pm$ 0.2 (lumi.) fb in the dielectron and dimuon channel, respectively.

1 data table

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity


Measurements of inclusive and differential cross-sections of combined $t\bar{t}\gamma$ and $tW\gamma$ production in the $e\mkern-2mu\mu$ channel at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 09 (2020) 049, 2020.
Inspire Record 1806806 DOI 10.17182/hepdata.94915

Inclusive and differential cross-sections for the production of top quarks in association with a photon are measured with proton$-$proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$. The data were collected by the ATLAS detector at the LHC during Run 2 between 2015 and 2018 at a centre-of-mass energy of 13 TeV. The measurements are performed in a fiducial volume defined at parton level. Events with exactly one photon, one electron and one muon of opposite sign, and at least two jets, of which at least one is $b$-tagged, are selected. The fiducial cross-section is measured to be $39.6\,^{+2.7}_{-2.3}\,\textrm{fb}$. Differential cross-sections as functions of several observables are compared with state-of-the-art Monte Carlo simulations and next-to-leading-order theoretical calculations. These include cross-sections as functions of photon kinematic variables, angular variables related to the photon and the leptons, and angular separations between the two leptons in the event. All measurements are in agreement with the predictions from the Standard Model.

24 data tables

The measured fiducial cross-section in the electron-muon channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The absolute differential cross-section measured in the fiducial phase-space as a function of the photon pT in the electron-muon channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.

The absolute differential cross-section measured in the fiducial phase-space as a function of the photon $|\eta|$ in the electron-muon channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.

More…

Version 2
Measurement of the $t\bar{t}$ production cross-section in the lepton+jets channel at $\sqrt{s}=13\;$TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 810 (2020) 135797, 2020.
Inspire Record 1802524 DOI 10.17182/hepdata.95748

The $t\bar{t}$ production cross-section is measured in the lepton+jets channel using proton$-$proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV collected with the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one charged lepton and four or more jets in the final state, with at least one jet containing $b$-hadrons, are used to determine the $t\bar{t}$ production cross-section through a profile-likelihood fit. The inclusive cross-section is measured to be ${\sigma_{\text{inc}} = 830 \pm 0.4~ \text{(stat.)}\pm 36~\text{(syst.)}\pm 14~\text{(lumi.)}~\mathrm{pb}}$ with a relative uncertainty of 4.6 %. The result is consistent with theoretical calculations at next-to-next-to-leading order in perturbative QCD. The fiducial $t\bar{t}$ cross-section within the experimental acceptance is also measured.

10 data tables

The results of fitted inclusive and fiducial ${t\bar{t}}$ cross-sections

The results of fitted inclusive and fiducial ${t\bar{t}}$ cross-sections

Ranking of the systematic uncertainties on the measured cross-section, normalised to the predicted value, in the inclusive fit to data. The impact of each nuisance parameter, $\Delta \sigma_{\text{inc}}/\sigma^{\text{pred.}}_{\text{inc}}$, is computed by comparing the nominal best-fit value of $\sigma_{\text{inc}}/\sigma^{\text{pred}}_{\text{inc}}$ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\theta$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta$ ($\pm \Delta \hat{\theta}$). The figure shows the effect of the ten most significant uncertainties.

More…

Version 4
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 051801, 2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.

216 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

More…

Version 3
Measurement of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 616, 2020.
Inspire Record 1768911 DOI 10.17182/hepdata.92377

This paper describes precision measurements of the transverse momentum $p_\mathrm{T}^{\ell\ell}$ ($\ell=e,\mu$) and of the angular variable $\phi^{*}_{\eta}$ distributions of Drell-Yan lepton pairs in a mass range of 66-116 GeV. The analysis uses data from 36.1 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the LHC in 2015 and 2016. Measurements in electron-pair and muon-pair final states are performed in the same fiducial volumes, corrected for detector effects, and combined. Compared to previous measurements in proton-proton collisions at $\sqrt{s}=$7 and 8 TeV, these new measurements probe perturbative QCD at a higher centre-of-mass energy with a different composition of initial states. They reach a precision of 0.2% for the normalized spectra at low values of $p_\mathrm{T}^{\ell\ell}$. The data are compared with different QCD predictions, where it is found that predictions based on resummation approaches can describe the full spectrum within uncertainties.

80 data tables

Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.

Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.

Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.

More…

Version 2
Measurement of the $Z(\rightarrow\ell^+\ell^-)\gamma$ production cross-section in $pp$ collisions at $\sqrt{s} =13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 03 (2020) 054, 2020.
Inspire Record 1764342 DOI 10.17182/hepdata.89875

The production of a prompt photon in association with a $Z$ boson is studied in proton-proton collisions at a centre-of-mass energy $\sqrt{s} =$ 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process $pp \rightarrow \ell^+\ell^-\gamma+X$ ($\ell = e, \mu$) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the $\ell^+\ell^-\gamma$ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered.

14 data tables

The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with Sherpa 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.

The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.

The measured fiducial cross section vs $E_{\mathrm{T}}^\gamma$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. The statistical and "Uncor" uncertainty should be treated as uncorrelated bin-to-bin, while the rest are correlated between bins, and they are written as signed NP variations. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with Sherpa 2.2.2 at NLO. The uncertainty is defined as Max(stat error, systematic difference between Sherpa LO and Sherpa 2.2.2 NLO), and cannot be considered correlated bin-to-bin. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production.

More…

Measurements of inclusive and differential fiducial cross-sections of $t\bar{t}\gamma$ production in leptonic final states at $\sqrt{s}$ = 13 TeV in ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 382, 2019.
Inspire Record 1707015 DOI 10.17182/hepdata.88061

Inclusive and differential cross-sections for the production of a top-quark pair in association with a photon are measured with proton-proton collision data corresponding to an integrated luminosity of 36.1 fb$^{-1}$, collected by the ATLAS detector at the LHC in 2015 and 2016 at a centre-of-mass energy of 13 TeV. The measurements are performed in single-lepton and dilepton final states in a fiducial volume. Events with exactly one photon, one or two leptons, a channel-dependent minimum number of jets, and at least one $b$-jet are selected. Neural network algorithms are used to separate the signal from the backgrounds. The fiducial cross-sections are measured to be 521 $\pm$ 9(stat.) $\pm$ 41(sys.) fb and 69 $\pm$ 3(stat.) $\pm$ 4(sys.) fb for the single-lepton and dilepton channels, respectively. The differential cross-sections are measured as a function of photon transverse momentum, photon absolute pseudorapidity, and angular distance between the photon and its closest lepton in both channels, as well as azimuthal opening angle and absolute pseudorapidity difference between the two leptons in the dilepton channel. All measurements are in agreement with the theoretical predictions.

20 data tables

The measured fiducial cross section in the single lepton channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The measured fiducial cross section in the dilepton channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The measured normalized differential cross section as a function of the photon pT in the single lepton channel. The uncertainty is decomposed into five components which are the signal modelling uncertainty, the experimental uncertainty, the ttbar modelling uncertainty, the other background estimation uncertainty, and the data statistical uncertainty.

More…

Search for the production of a long-lived neutral particle decaying within the ATLAS hadronic calorimeter in association with a $Z$ boson from $pp$ collisions at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 122 (2019) 151801, 2019.
Inspire Record 1702261 DOI 10.17182/hepdata.83963

This Letter presents a search for the production of a long-lived neutral particle ($Z_d$) decaying within the ATLAS hadronic calorimeter, in association with a Standard Model (SM) $Z$ boson produced via an intermediate scalar boson, where $Z\to l^+l^-$ ($l=e,\mu$). The data used were collected by the ATLAS detector during 2015 and 2016 $pp$ collisions with a center-of-mass energy of $\sqrt{s} = 13$ TeV at the Large Hadron Collider and corresponds to an integrated luminosity of $36.1\pm0.8$ fb$^{-1}$. No significant excess of events is observed above the expected background. Limits on the production cross section of the scalar boson times its decay branching fraction into the long-lived neutral particle are derived as a function of the mass of the intermediate scalar boson, the mass of the long-lived neutral particle, and its $c\tau$ from a few centimeters to one hundred meters. In the case that the intermediate scalar boson is the SM Higgs boson, its decay branching fraction to a long-lived neutral particle with a $c\tau$ approximately between 0.1 m and 7 m is excluded with a 95% confidence level up to 10% for $m_{Z_d}$ between 5 and 15 GeV.

1 data table

The product of acceptance and efficiency for all signal MC samples.