Showing 1 of 1 results
The associated production of a Higgs boson and a top-quark pair is measured in events characterised by the presence of one or two electrons or muons. The Higgs boson decay into a $b$-quark pair is used. The analysed data, corresponding to an integrated luminosity of 139 fb$^{-1}$, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is $0.35^{+0.36}_{-0.34}$. This result is compatible with the Standard Model prediction and corresponds to an observed (expected) significance of 1.0 (2.7) standard deviations. The signal strength is also measured differentially in bins of the Higgs boson transverse momentum in the simplified template cross-section framework, including a bin for specially selected boosted Higgs bosons with transverse momentum above 300 GeV.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of all Higgs boson candidates with reconstructed $p_T^H$ in the various bins of the dilepton (left), single-lepton resolved (middle) and boosted (right) channels.
Pre-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except for the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor which is not defined pre-fit. The last bin includes the overflow.
Pre-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except for the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor which is not defined pre-fit. The last bin includes the overflow.
Pre-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except for the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor which is not defined pre-fit. The last bin includes the overflow.
Comparison of predicted and observed event yields in each of the control and signal regions in the dilepton channel after the fit to the data. The uncertainty band includes all uncertainties and their correlations.
Comparison of predicted and observed event yields in each of the control and signal regions in the single-lepton channels after the fit to the data. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $120\le p_T^H<200$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $200\le p_T^H<300$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $p_{{T}}^{H}\ge 300$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $120\le p_T^H<200$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $200\le p_T^H<300$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $p_{{T}}^{H}\ge 450$ GeV (yield only). The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton boosted SRs after the inclusive fit to the data for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton boosted SRs after the inclusive fit to the data for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for ${\Delta R^{{avg}}_{bb}}$ after the inclusive fit to the data in the single-lepton $CR^{5j}_{{\geq}4b\ lo}$ control region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for ${\Delta R^{{avg}}_{bb}}$ after the inclusive fit to the data in the single-lepton $CR^{5j}_{{\geq}4b\ hi}$ control region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Post-fit yields of signal ($S$) and total background ($B$) as a function of $\log (S/B)$, compared with data. Final-discriminant bins in all dilepton and single-lepton analysis regions are combined into bins of $\log (S/B)$, with the signal normalised to the SM prediction used for the computation of $\log (S/B)$. The signal is then shown normalised to the best-fit value and the SM prediction. The lower frame reports the ratio of data to background, and this is compared with the expected ${t\bar {t}H}$-signal-plus-background yield divided by the background-only yield for the best-fit signal strength (solid red line) and the SM prediction (dashed orange line).
Comparison between data and prediction for the reconstruction BDT score for the Higgs boson candidate identified using Higgs boson information, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the average $\Delta \eta $ between $b$-tagged jets, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the likelihood discriminant, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the average $\Delta R$ for all possible combinations of $b$-tagged jet pairs, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the reconstructed Higgs boson candidate mass for the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Post-fit distribution of the reconstructed Higgs boson candidate mass for the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Post-fit distribution of the reconstructed Higgs boson candidate mass for the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Fitted values of the ${t\bar {t}H}$ signal strength parameter in the individual channels and in the inclusive signal-strength measurement.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the fit. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Pre-fit distribution of the number of jets in the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the Standard Model expectation. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor that is not defined pre-fit.
Pre-fit distribution of the number of jets in the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the Standard Model expectation. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor that is not defined pre-fit.
Pre-fit distribution of the number of jets in the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the Standard Model expectation. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor that is not defined pre-fit.
Post-fit distribution of the number of jets in the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the number of jets in the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the number of jets in the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The last bin includes the overflow.
Post-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The last bin includes the overflow.
Post-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The last bin includes the overflow.
Signal-strength measurements in the individual STXS ${\hat{p}_{{T}}^{H}}$ bins, as well as the inclusive signal strength.
95% CL simplified template cross-section upper limits in the individual STXS ${\hat{p}_{{T}}^{H}}$ bins, as well as the inclusive limit. The observed limits are shown (solid black lines), together with the expected limits both in the background-only hypothesis (dotted black lines) and in the SM hypothesis (dotted red lines). In the case of the expected limits in the background-only hypothesis, one- and two-standard-deviation uncertainty bands are also shown. The hatched uncertainty bands correspond to the theory uncertainty in the fiducial cross-section prediction in each bin.
The ratios $S/B$ (black solid line, referring to the vertical axis on the left) and $S/\sqrt{B}$ (red dashed line, referring to the vertical axis on the right) for each category in the inclusive analysis in the dilepton channel (left) and in the single-lepton channels (right), where $S$ ($B$) is the number of selected signal (background) events predicted by the simulation and normalised to a luminosity of 139 fb$^{-1}$ .
Comparison between data and prediction for the $\Delta R$ between the Higgs candidate and the ${t\bar {t}}$ candidate system, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the number of $b$-tagged jet pairs with an invariant mass within 30 GeV of 125 GeV, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the reconstruction BDT score for the Higgs boson candidate identified using Higgs boson information, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the $\Delta R$ between the two highest ${p_{{T}}}$ $b$-tagged jets, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the sum of $b$-tagging discriminants of jets from Higgs, hadronic top and leptonic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the sum of $b$-tagging discriminants of jets from Higgs, hadronic top and leptonic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the hadronic top candidate invariant mass, after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the hadronic top candidate invariant mass, after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the fraction of the sum of $b$-tagging discriminants of all jets not associated to the Higgs or hadronic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the fraction of the sum of $b$-tagging discriminants of all jets not associated to the Higgs or hadronic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $0\le {\hat{p}_{{T}}^{H}}<120$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $120\le {\hat{p}_{{T}}^{H}}<200$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $200\le {\hat{p}_{{T}}^{H}}<300$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $300\le {\hat{p}_{{T}}^{H}}<450$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for ${\hat{p}_{{T}}^{H}}\ge 450$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
95% confidence level upper limits on signal-strength measurements in the individual STXS ${\hat{p}_{{T}}^{H}}$ bins, as well as the inclusive signal-strength limit, after the fit used to extract multiple signal-strength parameters. The observed limits are shown (solid black lines), together with the expected limits both in the background-only hypothesis (dotted black lines) and in the SM hypothesis (dotted red lines). In the case of the expected limits in the background-only hypothesis, one- and two-standard-deviation uncertainty bands are also shown.
Post-fit correlation matrix (in percentages) between the $\mu $ values obtained in the STXS bins.
Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of Higgs boson candidates which are truth-matched to ${b\bar {b}}$ decays, with reconstructed $p_T^H$ in the various bins of the dilepton (left), single lepton resolved (middle) and boosted (right) channels.
Pre-fit event yields in the dilepton signal regions and control regions. All uncertainties are included except the $k({t\bar {t}+{\geq }1b})$ uncertainty that is not defined pre-fit. For the ${t\bar {t}H}$ signal, the pre-fit yield values correspond to the theoretical prediction and corresponding uncertainties. `Other sources' refers to s-channel, t-channel, $tW$, $tWZ$, $tZq$, $Z+$ jets and diboson events.
Post-fit event yields in the dilepton signal regions and control regions, after the inclusive fit in all channels. All uncertainties are included, taking into account correlations. For the ${t\bar {t}H}$ signal, the post-fit yield and uncertainties correspond to those in the inclusive signal-strength measurement. `Other sources' refers to s-channel, t-channel, $tW$, $tWZ$, $tZq$, $Z+$ jets and diboson events.
Pre-fit event yields in the single-lepton resolved and boosted signal regions and control regions. All uncertainties are included except the $k({t\bar {t}+{\geq }1b})$ uncertainty that is not defined pre-fit. For the ${t\bar {t}H}$ signal, the pre-fit yield values correspond to the theoretical prediction and corresponding uncertainties. `Other top sources' refers to s-channel, t-channel, $tWZ$ and $tZq$ events.
Post-fit event yields in the single-lepton resolved and boosted signal regions and control regions, after the inclusive fit in all channels. All uncertainties are included, taking into account correlations. For the ${t\bar {t}H}$ signal, the post-fit yield and uncertainties correspond to those in the inclusive signal-strength measurement. `Other top sources' refers to s-channel, t-channel, $tWZ$ and $tZq$ events.
Breakdown of the contributions to the uncertainties in $\mu$. The contributions from the different sources of uncertainty are evaluated after the fit. The $\Delta \mu $ values are obtained by repeating the fit after having fixed a certain set of nuisance parameters corresponding to a group of systematic uncertainties, and then evaluating $(\Delta \mu)^2$ by subtracting the resulting squared uncertainty of $\mu $ from its squared uncertainty found in the full fit. The same procedure is followed when quoting the effect of the ${t\bar {t}+{\geq }1b}$ normalisation. The total uncertainty is different from the sum in quadrature of the different components due to correlations between nuisance parameters existing in the fit.
Fraction (in percentages) of signal events, after SR and CR selections, originating from $b\bar {b}$, $WW$ and other remaining Higgs boson decay modes in the dilepton channel.
Fraction (in percentages) of signal events, after SR and CR selections, originating from $b\bar {b}$, $WW$ and other remaining Higgs boson decay modes in the single-lepton channels.
Predicted SM ${t\bar {t}H}$ cross-section in each of the five STXS ${\hat{p}_{{T}}^{H}}$ bins and signal acceptance times efficiency (including all event selection criteria) in each STXS bin as well as for the inclusive ${\hat{p}_{{T}}^{H}}$ range.
Number of expected signal events before the fit, after each selection requirement applied to enter the dilepton channel $SR^{\geq 4j}_{\geq 4b}$ region. All ${t\bar {t}H}$ signal events are included, regardless of the $H$ or ${t\bar {t}H}$ decay mode. All object corrections are applied, except for the initial number of events which is calculated using the NLO QCD+EW theoretical prediction. All quoted numbers are rounded to unity. More details on the selection criteria can be found in the text.
Number of expected signal events before the fit, after each selection requirement applied to enter the single-lepton channel resolved $SR^{\geq 6j}_{\geq 4b}$ region. All ${t\bar {t}H}$ signal events are included, regardless of the $H$ or ${t\bar {t}H}$ decay mode. All object corrections are applied, except for the initial number of events which is calculated using the NLO QCD+EW theoretical prediction. All quoted numbers are rounded to unity. More details on the selection criteria can be found in the text.
Number of expected signal events before the fit, after each selection requirement applied to enter the single-lepton channel boosted $SR_{boosted}$ region. All ${t\bar {t}H}$ signal events are included, regardless of the $H$ or ${t\bar {t}H}$ decay mode. All object corrections are applied, except for the initial number of events which is calculated using the NLO QCD+EW theoretical prediction. All quoted numbers are rounded to unity. More details on the selection criteria can be found in the text.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.