Showing 10 of 312 results
This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for HMT events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter λ as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 71 ≤ n<sub>ch</sub> < 80 for the minimum-bias (MB) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 231 ≤ n<sub>ch</sub> < 300 for the high-multiplicity track (HMT) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative multiplicity region 3.09 < m<sub>ch</sub> ≤ 3.86. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative k<sub>T</sub> region 400 < k<sub>T</sub> ≤500 MeV. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
Systematic uncertainties (in percent) in the correlation strength, λ, and source radius, R, for the exponential fit of the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), for p<sub>T</sub> > 100 MeV at √s= 13 TeV for the MB and HMT events. The choice of MC generator gives rise to asymmetric uncertainties, denoted by uparrow and downarrow. This asymmetry propagates through to the cumulative uncertainty. The columns under ‘Uncertainty range’ show the range of systematic uncertainty from the fits in the various n<sub>ch</sub> intervals.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the average rescaled charged-particle multiplicity, m<sub>ch</sub>, for |η| < 2.5 and both p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and the high-multiplicity track (HMT) events. The parameters γ and δ resulting from a joint fit to the MB and HMT data are presented. The total uncertainties are shown.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the pair average transverse momentum, k<sub>T</sub>, for various functional forms and for minimum-bias (MB) and high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV. The total uncertainties are shown.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the multiplicity, m<sub>ch</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the multiplicity, m<sub>ch</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 500 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the pair transverse momentum, k<sub>T</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the pair transverse momentum, k<sub>T</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 500 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb$^{-1}$. The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson $Z'$ or a pseudoscalar singlet $a$ and which both provide a dark matter candidate $\chi$. In the case of the two-Higgs-doublet model with an additional vector boson $Z'$, the observed limits extend up to a $Z'$ mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar $a$ is excluded for masses of the $a$ up to 520 GeV and 240 GeV for $\tan \beta = 1$ and $\tan \beta = 10$ respectively. Limits on the visible cross-sections are set and range from 0.05 fb to 3.26 fb, depending on the missing transverse momentum and $b$-quark jet multiplicity requirements.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=LimitContour_ZP2HDM_obs">Observed 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_ZP2HDM_exp">Expected 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_ZP2HDM_exp_1s">Expected +- 1sigma 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_ZP2HDM_exp_2s">Expected +- 2sigma 95% CL exclusion limit for the Z'-2HDM model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_obs">Observed 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_exp">Expected 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_exp_1s">Expected +- 1 sigma 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb1_sp0p35_exp_2s">Expected +- 2 sigma 95% CL exclusion limit for ggF production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_obs">Observed 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_exp">Expected 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_exp_1s">Expected +- 1 sigma 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_2HDMa_tb10_sp0p35_exp_2s">Expected +- 2 sigma 95% CL exclusion limit for bbA production in the 2HDM+a model</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_obs">Observed 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_exp">Expected 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_exp_1s">Expected +- 1 sigma 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> <li><a href="?table=LimitContour_ZP2HDM_2018CONF_exp_2s">Expected +- 2 sigma 95% CL exclusion limit for the Z'-2HDM model with the benchmark used in arXiv:1707.01302.</a> </ul> <b>Upper limits on cross-sections:</b> <ul> <li><a href="?table=Limits_ZP2HDM">95% CL upper limit on the cross-section for the Z'-2HDM model</a> <li><a href="?table=Limits_2HDMa_tb1_sp0p35">95% CL upper limit on the ggF cross-section in the 2HDM+a model</a> <li><a href="?table=Limits_2HDMa_tb10_sp0p35">95% CL upper limit on the bbA cross-section in the 2HDM+a model</a> <li><a href="?table=MIL">95% CL upper limit on the visible cross-section</a> </ul> <b>Theoretical cross-sections:</b> <ul> <li><a href="?table=CrossSections_ZP2HDM">Cross-section for the Z'-2HDM model</a> <li><a href="?table=CrossSections_2HDMa_tb1_sp0p35">Cross-section for ggF production in the 2HDM+a model</a> <li><a href="?table=CrossSections_2HDMa_tb10_sp0p35">Cross-section for bbA production in the 2HDM+a model</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR_post_plot_2b_150_200">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=SR_post_plot_2b_200_350">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=SR_post_plot_2b_350_500">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=SR_post_plot_2b_500_750">Higgs candidate invariant mass in the region with 2 b-jets and missing energy between 500-750 GeV</a> <li><a href="?table=SR_post_plot_2b_750">Higgs candidate invariant mass in the region with 2 b-jets and missing energy higher than 750 GeV</a> <li><a href="?table=SR_post_plot_3b_150_200">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=SR_post_plot_3b_200_350">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=SR_post_plot_3b_350_500">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=SR_post_plot_3b_500">Higgs candidate invariant mass in the region with at least 3 b-jets and missing energy higher than 500 GeV</a> <li><a href="?table=MET_post_plot_0L2b">Missing energy in events with 0 leptons and 2 b-jets</a> <li><a href="?table=MET_post_plot_0L3b">Missing energy in events with 0 leptons and at least 3 b-jets</a> <li><a href="?table=CR_post_plot_CR1">Yields in the different missing energy bins and muon-charge of the 1-lepton control region</a> <li><a href="?table=CR_post_plot_CR2">Yields in the different METlepInv bins of the 2-lepton control region</a> </ul> <b>Cut flows:</b> The tables contain three columns, corresponding to the Z'-2HDM and 2HDM+a model assuming 100% ggF or bbA production respectively. <ul> <li><a href="?table=Resolved_150_200_2b">Signal region with 2 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=Resolved_200_350_2b">Signal region with 2 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=Resolved_350_500_2b">Signal region with 2 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=Merged_500_750_2w0b">Signal region with 2 b-jets and missing energy between 500-750 GeV</a> <li><a href="?table=Merged_750_2w0b">Signal region with 2 b-jets and missing energy higher than 750 GeV</a> <li><a href="?table=Resolved_150_200_3pb">Signal region with at least 3 b-jets and missing energy between 150-200 GeV</a> <li><a href="?table=Resolved_200_350_3pb">Signal region with at least 3 b-jets and missing energy between 200-350 GeV</a> <li><a href="?table=Resolved_350_500_3pb">Signal region with at least 3 b-jets and missing energy between 350-500 GeV</a> <li><a href="?table=Merged_2w1pb">Signal region with at least 3 b-jets and missing energy higher than 500 GeV</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_150_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_200_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_350_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_500_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET=500-750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_2_750ptv_noHiggsWindowCut">2HDM+a model, bbA production, 2 b-jets, MET higher than 750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_150_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_200_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_350_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_bb_3_500ptv_noHiggsWindowCut">2HDM+a model, bbA production, at least 3 b-jets, MET higher than GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_150_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_200_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_350_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_500_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET=500-750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_2_750ptv_noHiggsWindowCut">2HDM+a model, ggF production, 2 b-jets, MET higher than 750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_150_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_200_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_350_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_a2HDM_ggF_3_500ptv_noHiggsWindowCut">2HDM+a model, ggF production, at least 3 b-jets, MET higher than 500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_150_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_200_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_350_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_500_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET=500-750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_2_750ptv_noHiggsWindowCut">Z'-2HDM model, 2 b-jets, MET higher than 750 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_150_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET=150-200 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_200_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET=200-350 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_350_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET=350-500 GeV</a> <li><a href="?table=AcceptanceTimesEfficiency_zp2hdm_CMS_3_500ptv_noHiggsWindowCut">Z'-2HDM model, at least 3 b-jets, MET higher than 500 GeV</a> </ul>
Observed 95% CL exclusion limit for the Zprime-2HDM model.
Expected 95% CL exclusion limit for the Zprime-2HDM model.
Expected +- 1 sigma 95% CL exclusion limit for the Zprime-2HDM model.
Expected +- 2 sigma 95% CL exclusion limit for the Zprime-2HDM model.
Observed 95% CL exclusion limit for the 2HDM+a model ggF production.
Expected 95% CL exclusion limit for the 2HDM+a model ggF production.
Expected +- 1 sigma 95% CL exclusion limit for the 2HDM+a model ggF production.
Expected +- 2 sigma 95% CL exclusion limit for the 2HDM+a model ggF production.
Observed 95% CL exclusion limit for the 2HDM+a model bbA production.
Expected 95% CL exclusion limit for the 2HDM+a model bbA production.
Expected +- 1 sigma 95% CL exclusion limit for the 2HDM+a model bbA production.
Expected +- 2 sigma 95% CL exclusion limit for the 2HDM+a model bbA production.
Observed 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected +- 1 sigma 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected +- 2 sigma 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected and observed upper limits at 95% CL on cross-section for Zprime-2HDM model.
Expected and observed upper limits at 95% CL on cross-section for ggF producton in the 2HDM+a model.
Expected and observed upper limits at 95% CL on cross-section for bbA producton in the 2HDM+a model.
Model-independent upper limits on the visible cross-section $σ_{vis, $h(\bar{b})+DM} ≡ σ_{h+DM} \times B(h \to b\bar{b}) \times \mathcal{A} \times \epsilon$ in the different signal regions.
Theory cross-section for Zprime-2HDM model.
Theory cross-section for bbA production in the 2HDM+a model.
Theory cross-section for ggF production in the 2HDM+a model.
Distribution of Higgs boson candidate mass in 2b region with MET=150-200 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET=200-350 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET=350-500 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET=500-750 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET > 750 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET=150-200 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET=200-350 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET=350-500 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET > 500 GeV.
Yields in 1-lepton control region.
Yields in 2-lepton control region.
MET distribution in 2b region of the 0-lepton channel.
MET distribution in 3b region of the 0-lepton channel.
Expected signal yields after certain selection cuts in 2b region with MET=150-200 GeV.
Expected signal yields after certain selection cuts in 2b region with MET=200-350 GeV.
Expected signal yields after certain selection cuts in 2b region with MET=350-500 GeV.
Expected signal yields after certain selection cuts in 2b region with MET=500-750 GeV.
Expected signal yields after certain selection cuts in 2b region with MET > 750 GeV.
Expected signal yields after certain selection cuts in 3b region with MET=150-200 GeV.
Expected signal yields after certain selection cuts in 3b region with MET=200-350 GeV.
Expected signal yields after certain selection cuts in 3b region with MET=350-500 GeV.
Expected signal yields after certain selection cuts in 3b region with MET > 500 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=150-200 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=200-350 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=350-500 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=500-750 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET > 750 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET=150-200 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET=200-350 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET=350-500 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET>500 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=500-750 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET > 750 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET > 500 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=500-750 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET > 750 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET > 500 GeV.
A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.
Relative systematic uncertainties in the estimated number of background events in the signal regions. In the lower part of the table, a breakdown of the total uncertainty into different categories is given. For the multi-bin SR, the breakdown refers to the integral over all three $p_{\text{T}}(\tau)$ bins. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.
Distributions of $m_{\text{T}2}(\tau_{1},\tau_{2})$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Distributions of $E_{\text{T}}^{\text{miss}}$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Distributions of $s_{\text{T}}$ in the single-tau one-bin SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Distributions of $m_{\text{T}}(\tau)$ in the single-tau one-bin SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Distributions of $\Sigma m_{\text{T}}(b_{1,2})$ in the single-tau $p_{\text{T}}(\tau)$-binned SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Distributions of $p_{\text{T}}(\tau)$ in the single-tau $p_{\text{T}}(\tau)$-binned SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Observed event yields in data ('Observed') and expected event yields for SM background processes obtained from the background-only fit ('Total bkg.' and rows below) in the signal regions of the di-tau and single-tau channels. The quoted uncertainties include both the statistical and systematic uncertainties and are truncated at zero yield. By construction, no $t\bar{t}$ (2 real $\tau$) events can pass the selections in the single-tau channel. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.
From left to right: upper limits at the 95% confidence level (CL) on the visible cross section ($\sigma_\text{vis}$) and on the number of signal events ($S_{\text{obs}}^{95}$). The third column ($S_{\text{exp}}^{95}$) shows the upper limit at the 95% CL on the number of signal events, given the expected number (and $\pm 1\,\sigma$ excursions on the expectation) of background events. The last two columns indicate the confidence level observed for the background-only hypothesis ($\text{CL}_{b}$), the discovery $p$-value ($p(s=0)$) and the significance ($Z$). In the di-tau SR, where fewer events are observed than predicted by the fitted background estimate, the $p$-value is capped at 0.5.
Expected and observed exclusion contours at the 95% confidence level for the vector third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{v}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ into a quark and a charged lepton. The plot shows the exclusion contour for the minimal-coupling scenario. The limits are derived from the binned single-tau signal region.
Expected and observed exclusion contours at the 95% confidence level for the vector third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{v}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ into a quark and a charged lepton. The plot shows the exclusion contour for the minimal-coupling scenario. The limits are derived from the binned single-tau signal region.
Expected and observed exclusion contours at the 95% confidence level for the vector third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{v}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ into a quark and a charged lepton. The plot shows the exclusion contour for vector leptoquarks with additional gauge couplings. The limits are derived from the binned single-tau signal region.
Expected and observed exclusion contours at the 95% confidence level for the vector third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{v}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ into a quark and a charged lepton. The plot shows the exclusion contour for vector leptoquarks with additional gauge couplings. The limits are derived from the binned single-tau signal region.
Exclusion contours at the 95% confidence level for the stop-stau signal model as a function of the masses of the top squark $m(\tilde{t}_{1})$ and of the tau slepton $m(\tilde{\tau}_{1})$. Expected and observed limits are shown for the present search in comparison to observed limits from previous ATLAS analyses based on data from Run-1 of the LHC at $\sqrt{s} = 8$ TeV [Eur. Phys. J. C 76 (2016)] and on a partial dataset from Run 2 at $\sqrt{s} = 13$ TeV [Phys. Rev. D 98 (2018) 032008]. The green band indicates the limit on the mass of the tau slepton (for a massless LSP) from the LEP experiments.
Exclusion contours at the 95% confidence level for the stop-stau signal model as a function of the masses of the top squark $m(\tilde{t}_{1})$ and of the tau slepton $m(\tilde{\tau}_{1})$. Expected and observed limits are shown for the present search in comparison to observed limits from previous ATLAS analyses based on data from Run-1 of the LHC at $\sqrt{s} = 8$ TeV [Eur. Phys. J. C 76 (2016)] and on a partial dataset from Run 2 at $\sqrt{s} = 13$ TeV [Phys. Rev. D 98 (2018) 032008]. The green band indicates the limit on the mass of the tau slepton (for a massless LSP) from the LEP experiments.
Expected and observed exclusion contours at the 95% confidence level for the scalar third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{u}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow q\ell)$ into a quark and a charged lepton. The plot shows the exclusion contour for up-type leptoquarks $\text{LQ}_{3}^{\text{u}})$ with charge $+2/3e$. The limits are derived from the binned single-tau signal region. Shown in gray for comparison are the observed exclusion-limit contours from the previous ATLAS publication that targets the same leptoquark models but is based on a subset of the Run-2 data [JHEP 06 (2019) 144]. In this previous publication five different analyses are considered that target not only the final state studied here but also the final states that correspond to a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow q\ell)$ of 0 or 1, leading to the concave shapes of the gray exclusion contours.
Expected and observed exclusion contours at the 95% confidence level for the scalar third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{u}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow q\ell)$ into a quark and a charged lepton. The plot shows the exclusion contour for up-type leptoquarks $\text{LQ}_{3}^{\text{u}})$ with charge $+2/3e$. The limits are derived from the binned single-tau signal region. Shown in gray for comparison are the observed exclusion-limit contours from the previous ATLAS publication that targets the same leptoquark models but is based on a subset of the Run-2 data [JHEP 06 (2019) 144]. In this previous publication five different analyses are considered that target not only the final state studied here but also the final states that correspond to a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow q\ell)$ of 0 or 1, leading to the concave shapes of the gray exclusion contours.
Expected and observed exclusion contours at the 95% confidence level for the scalar third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{d}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow q\ell)$ into a quark and a charged lepton. The plot shows the exclusion contour for down-type leptoquarks $\text{LQ}_{3}^{\text{d}})$ with charge $-1/3e$. The limits are derived from the binned single-tau signal region. Shown in gray for comparison are the observed exclusion-limit contours from the previous ATLAS publication that targets the same leptoquark models but is based on a subset of the Run-2 data [JHEP 06 (2019) 144]. In this previous publication five different analyses are considered that target not only the final state studied here but also the final states that correspond to a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow q\ell)$ of 0 or 1, leading to the concave shapes of the gray exclusion contours.
Expected and observed exclusion contours at the 95% confidence level for the scalar third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{d}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow q\ell)$ into a quark and a charged lepton. The plot shows the exclusion contour for down-type leptoquarks $\text{LQ}_{3}^{\text{d}})$ with charge $-1/3e$. The limits are derived from the binned single-tau signal region. Shown in gray for comparison are the observed exclusion-limit contours from the previous ATLAS publication that targets the same leptoquark models but is based on a subset of the Run-2 data [JHEP 06 (2019) 144]. In this previous publication five different analyses are considered that target not only the final state studied here but also the final states that correspond to a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow q\ell)$ of 0 or 1, leading to the concave shapes of the gray exclusion contours.
Upper limits on the signal cross section at the 95 % confidence level for the stop-stau signal model.
Upper limits on the signal cross section at the 95 % confidence level for the scalar third-generation leptoquark signal model with up-type leptoquarks.
Upper limits on the signal cross section at the 95 % confidence level for the scalar third-generation leptoquark signal model with down-type leptoquarks.
Upper limits on the signal cross section at the 95 % confidence level for the vector third-generation leptoquark signal model with minimal coupling (MC).
Upper limits on the signal cross section at the 95 % confidence level for the vector third-generation leptoquark signal model with additional gauge couplings (YM).
Acceptance of the one-bin signal region of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$.
Efficiency of the one-bin signal region of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$.
Efficiency of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$.
Efficiency of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$.
Efficiency of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the signal region of the di-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$.
Efficiency of the signal region of the di-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow b\tau)$ of 0 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the one-bin signal region of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$.
Efficiency of the one-bin signal region of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow t\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$.
Efficiency of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow t\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$.
Efficiency of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow t\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$.
Efficiency of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow t\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the signal region of the di-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$.
Efficiency of the signal region of the di-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow t\tau)$ of 0 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the one-bin signal region of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario.
Efficiency of the one-bin signal region of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario.
Efficiency of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario.
Efficiency of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario.
Efficiency of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the signal region of the di-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario.
Efficiency of the signal region of the di-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the one-bin signal region of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings.
Efficiency of the one-bin signal region of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings.
Efficiency of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings.
Efficiency of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings.
Efficiency of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the signal region of the di-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings.
Efficiency of the signal region of the di-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the one-bin signal region of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Efficiency of the one-bin signal region of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Acceptance of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Efficiency of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Acceptance of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Efficiency of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Acceptance of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Efficiency of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Acceptance of the signal region of the di-tau channel for pair production of top squarks with decays via tau sleptons.
Efficiency of the signal region of the di-tau channel for pair production of top squarks with decays via tau sleptons.
Cutflow for the benchmark signal model $m(\tilde{t}_{1}) = 1350$ GeV, $m(\tilde{\tau}_{1}) = 1090$ GeV for the di-tau SR. The simulated sample contains 30,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the di-tau channel.
Cutflow for the benchmark signal model $m(\tilde{t}_{1}) = 1350$ GeV, $m(\tilde{\tau}_{1}) = 1090$ GeV for the single-tau one-bin SR. The simulated sample contains 30,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\tilde{t}_{1}) = 1350$ GeV, $m(\tilde{\tau}_{1}) = 1090$ GeV for the single-tau multi-bin SR. The simulated sample contains 30,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{u}}) = 1.2$ TeV, $\beta = 0.5$ for the di-tau SR. The simulated sample contains 210,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the di-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{u}}) = 1.2$ TeV, $\beta = 0.5$ for the single-tau one-bin SR. The simulated sample contains 210,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{u}}) = 1.2$ TeV, $\beta = 0.5$ for the single-tau multi-bin SR. The simulated sample contains 210,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{d}}) = 1.2$ TeV, $\beta = 0.5$ for the di-tau SR. The simulated sample contains 210,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the di-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{d}}) = 1.2$ TeV, $\beta = 0.5$ for the single-tau one-bin SR. The simulated sample contains 210,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{d}}) = 1.2$ TeV, $\beta = 0.5$ for the single-tau multi-bin SR. The simulated sample contains 210,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{v}}) = 1.4$ TeV, $\beta = 0.5$ in the minimal-coupling scenario for the di-tau SR. The simulated sample contains 50,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the di-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{v}}) = 1.4$ TeV, $\beta = 0.5$ in the minimal-coupling scenario for the single-tau one-bin SR. The simulated sample contains 50,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{v}}) = 1.4$ TeV, $\beta = 0.5$ in the minimal-coupling scenario for the single-tau multi-bin SR. The simulated sample contains 50,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{v}}) = 1.4$ TeV, $\beta = 0.5$ in the Yang--Mills scenario for the di-tau SR. The simulated sample contains 50,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the di-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{v}}) = 1.4$ TeV, $\beta = 0.5$ in the Yang--Mills scenario for the single-tau one-bin SR. The simulated sample contains 50,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{v}}) = 1.4$ TeV, $\beta = 0.5$ in the Yang--Mills scenario for the single-tau multi-bin SR. The simulated sample contains 50,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Measurements of both the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. The measurements are performed by targeting final states with three or four isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton-proton collision data with an integrated luminosity of 139 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat.) $\pm 0.08$ (syst.) pb, in agreement with the most precise theoretical predictions. The differential measurements are presented as a function of a number of kinematic variables which probe the kinematics of the $t\bar{t}Z$ system. Both absolute and normalised differential cross-section measurements are performed at particle and parton levels for specific fiducial volumes and are compared with theoretical predictions at different levels of precision, based on a $\chi^{2}/$ndf and $p$-value computation. Overall, good agreement is observed between the unfolded data and the predictions.
The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.
List of relative uncertainties of the measured inclusive $t\bar{t}\text{Z}$ cross section from the combined fit. The uncertainties are symmetrised for presentation and grouped into the categories described in the text. The quadratic sum of the individual uncertainties is not equal to the total uncertainty due to correlations introduced by the fit.
The definitions of the trilepton signal regions: for the inclusive measurement, a combination of the regions with pseudo-continuous $b$-tagging 3$\ell$-Z-1$b$4$j$-PCBT and 3$\ell$-Z-2$b$3$j$-PCBT is used, whereas for the differential measurement, only the region 3$\ell$-Z-2$b$3$j$, with a fixed $b$-tagging WP is employed.
The definitions of the four tetralepton signal regions. The regions are defined to target different $b$-jet multiplicities and flavour combinations of the non-Z leptons.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel.
Fiducial and differential measurements of $W^+W^-$ production in events with at least one hadronic jet are presented. These cross-section measurements are sensitive to the properties of electroweak-boson self-interactions and provide a test of perturbative quantum chromodynamics and the electroweak theory. The analysis is performed using proton$-$proton collision data collected at $\sqrt{s}=13~$TeV with the ATLAS experiment, corresponding to an integrated luminosity of 139$~$fb$^{-1}$. Events are selected with exactly one oppositely charged electron$-$muon pair and at least one hadronic jet with a transverse momentum of $p_{\mathrm{T}}>30~$GeV and a pseudorapidity of $|\eta|<4.5$. After subtracting the background contributions and correcting for detector effects, the jet-inclusive $W^+W^-+\ge 1~$jet fiducial cross-section and $W^+W^-+$ jets differential cross-sections with respect to several kinematic variables are measured, thus probing a previously unexplored event topology at the LHC. These measurements include leptonic quantities, such as the lepton transverse momenta and the transverse mass of the $W^+W^-$ system, as well as jet-related observables such as the leading jet transverse momentum and the jet multiplicity. Limits on anomalous triple-gauge-boson couplings are obtained in a phase space where interference between the Standard Model amplitude and the anomalous amplitude is enhanced.
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 1168 GeV.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $p_{\mathrm{T}}^{\mathrm{sub-lead.~lep.}}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 609 GeV.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{sub-lead.~lep.}}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{sub-lead.~lep.}}$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $p_{\mathrm{T}}^{\mathrm{lead.~jet}}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 1485 GeV.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.~jet}}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.~jet}}$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $H_{\mathrm{T}}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 2969 GeV.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $H_{\mathrm{T}}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $H_{\mathrm{T}}$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $S_{\mathrm{T}}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 3296 GeV.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $S_{\mathrm{T}}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $S_{\mathrm{T}}$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $m_{\mathrm{T},e\mu}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 4130 GeV.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $m_{\mathrm{T},e\mu}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $m_{\mathrm{T},e\mu}$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $m_{e\mu}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 3519 GeV.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $m_{e\mu}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $m_{e\mu}$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $p_{\mathrm{T},e\mu}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 1067 GeV.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T},e\mu}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T},e\mu}$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $\Delta\phi(e,\mu)$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $\Delta\phi(e,\mu)$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $\Delta\phi(e,\mu)$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $y_{e\mu}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $y_{e\mu}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $y_{e\mu}$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $\cos\theta^*$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $\cos\theta^*$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $\cos\theta^*$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $n_{\mathrm{jet}}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $n_{\mathrm{jet}}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $n_{\mathrm{jet}}$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $m_{e\mu}$ for $p_{\mathrm{T}}^{\mathrm{lead.~jet}} > 200$ GeV. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 3519 GeV.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $m_{e\mu}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $m_{e\mu}$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $\Delta\phi(e,\mu)$ for $p_{\mathrm{T}}^{\mathrm{lead.~jet}} > 200$ GeV. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $\Delta\phi(e,\mu)$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $\Delta\phi(e,\mu)$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $\Delta\phi(\mathrm{sub-lead.~lep.}, \mathrm{lead.~jet})$ for $p_{\mathrm{T}}^{\mathrm{lead.~lep.}} > 200$ GeV. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $\Delta\phi(\mathrm{sub-lead.~lep.}, \mathrm{lead.~jet})$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $\Delta\phi(\mathrm{sub-lead.~lep.}, \mathrm{lead.~jet})$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $\Delta R(\mathrm{sub-lead.~lep.}, \mathrm{lead.~jet})$ for $p_{\mathrm{T}}^{\mathrm{lead.~lep.}} > 200$ GeV. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $\Delta R(\mathrm{sub-lead.~lep.}, \mathrm{lead.~jet})$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $\Delta R(\mathrm{sub-lead.~lep.}, \mathrm{lead.~jet})$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $p_{\mathrm{T}}^{\mathrm{sub-lead.~lep.}} / p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$ for $p_{\mathrm{T}}^{\mathrm{lead.~lep.}} > 200$ GeV. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{sub-lead.~lep.}} / p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{sub-lead.~lep.}} / p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$
Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $p_{\mathrm{T}}^{\mathrm{sub-lead.~lep.}} / p_{\mathrm{T}}^{\mathrm{lead.~jet}}$ for $p_{\mathrm{T}}^{\mathrm{lead.~lep.}} > 200$ GeV. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. The largest observed value is 19.6.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{sub-lead.~lep.}} / p_{\mathrm{T}}^{\mathrm{lead.~jet}}$
Correlation matrix of the total uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{sub-lead.~lep.}} / p_{\mathrm{T}}^{\mathrm{lead.~jet}}$
A search for the Higgs boson decaying into a photon and a pair of electrons or muons with an invariant mass $m_{\ell\ell} < 30$ GeV is presented. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data, produced by the LHC at a centre-of-mass energy of 13 TeV and collected by the ATLAS experiment. Evidence for the $H \rightarrow \ell \ell \gamma$ process is found with a significance of 3.2$\sigma$ over the background-only hypothesis, compared to an expected significance of 2.1$\sigma$. The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the Standard Model, is $\mu = 1.5 \pm 0.5$. The Higgs boson production cross-section times the $H \rightarrow\ell\ell\gamma$ branching ratio for $m_{\ell\ell} <$ 30 GeV is determined to be 8.7 $^{+2.8}_{-2.7}$ fb.
Number of data events selected in each analysis category in the $m_{\ell\ell\gamma}$ mass range of 110--160 GeV. In addition, the following numbers are given: number of $H\rightarrow\gamma^{*}\gamma\rightarrow \ell\ell\gamma$ events in the smallest $m_{\ell\ell\gamma}$ window containing 90\% of the expected signal ($S_{90}$), the non-resonant background in the same interval ($B_{90}^N$) as estimated from fits to the data sidebands using the background models, the resonant background in the same interval ($B_{H\rightarrow\gamma\gamma}$), the expected signal purity $f_{90} = S_{90}/(S_{90}+B_{90})$, and the expected significance estimate defined as $Z_{90} = \sqrt{ 2( (S_{90}+B_{90})\,\ln(1+S_{90}/B_{90}) - S_{90}) }$ where $B_{90} = B_{90}^N+B_{H\rightarrow\gamma\gamma}$. $B_{H\rightarrow\gamma\gamma}$ is only relevant for the electron categories and is marked as 0 otherwise
The best fit value for the signal yield normalised to the Standard Model prediction (signal strength) for $pp \to H \to Z+\gamma$
Measured $\sigma( p p \rightarrow H) \cdot B(H\rightarrow \ell\ell\gamma)$ for $m_{\ell\ell} < 30$ GeV
The results of a search for direct pair production of top squarks and for dark matter in events with two opposite-charge leptons (electrons or muons), jets and missing transverse momentum are reported, using 139 fb$^{-1}$ of integrated luminosity from proton-proton collisions at $\sqrt{s} = 13$ TeV, collected by the ATLAS detector at the Large Hadron Collider during Run 2 (2015-2018). This search considers the pair production of top squarks and is sensitive across a wide range of mass differences between the top squark and the lightest neutralino. Additionally, spin-0 mediator dark-matter models are considered, in which the mediator is produced in association with a pair of top quarks. The mediator subsequently decays to a pair of dark-matter particles. No significant excess of events is observed above the Standard Model background, and limits are set at 95% confidence level. The results exclude top squark masses up to about 1 TeV, and masses of the lightest neutralino up to about 500 GeV. Limits on dark-matter production are set for scalar (pseudoscalar) mediator masses up to about 250 (300) GeV.
Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.
Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Four-body selection. (a) distributions of $E_{T}^{miss}$ in $SR^{4-body}_{Small\,\Delta m}$ and (b) distribution of $R_{2\ell 4j}$ in $SR^{4-body}_{Large\,\Delta m}$ for events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panel indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Four-body selection. (a) distributions of $E_{T}^{miss}$ in $SR^{4-body}_{Small\,\Delta m}$ and (b) distribution of $R_{2\ell 4j}$ in $SR^{4-body}_{Large\,\Delta m}$ for events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panel indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the Observed limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Two-body selection. Background fit results for $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}}$, $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}Z}$, $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t}, DF}$, $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t}, SF}$ and $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t} Z}$. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Three-body selection. Background fit results for $\mathrm{CR}^{\mathrm{3-body}}_{t\bar{t}}$, $\mathrm{CR}^{\mathrm{3-body}}_{VV}$, $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}Z}$, $\mathrm{VR}^{\mathrm{3-body}}_{VV}$, $\mathrm{VR(1)}^{\mathrm{3-body}}_{t\bar{t}}$ and $\mathrm{VR(2)}^{\mathrm{3-body}}_{t\bar{t}}$. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Four-body selection. Background fit results for $\mathrm{CR}^{\mathrm{4-body}}_{t\bar{t}}$,$\mathrm{CR}^{\mathrm{4-body}}_{VV}$, $\mathrm{VR}^{\mathrm{4-body}}_{t\bar{t}}$, $VR^{4-body}_{VV}$ and $\mathrm{VR}^{\mathrm{4-body}}_{VV,lll}$. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Two-body selection. Background fit results for the different-flavour leptons binned SRs. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Two-body selection. Background fit results for the same-flavour leptons binned SRs. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Three-body selection. Observed event yields and background fit results for the three-body selection SRs. The ''Others'' category contains contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Four-body selection. Observed event yields and background fit results for SR$^{\mathrm{4-body}}_{\mathrm{Small}\,\Delta m}$ and SR$^{\mathrm{4-body}}_{\mathrm{Large}\,\Delta m}$. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Exclusion limits contours (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with 100% branching ratio in $\tilde{t}_1--\tilde{\chi}^0_1$ masses planes. The dashed lines and the shaded bands are the expected limit and its $\pm 1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The exclusion limits contours for the two-body, three-body and four-body selections are respectively shown in blue, green and red.
Exclusion limits contours (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with 100% branching ratio in $\tilde{t}_1--\tilde{\chi}^0_1$ masses planes. The dashed lines and the shaded bands are the expected limit and its $\pm 1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The exclusion limits contours for the two-body, three-body and four-body selections are respectively shown in blue, green and red.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm 1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty.The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty.The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Four-body selection Efficiency (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Four-body selection Efficiency (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta\ m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Four-body selection acceptance (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Four-body selection acceptance (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Three-body selection The numbers indicate the upper limits on the signal strenght for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Four-body selection The numbers indicate the upper limits on the signal strenght for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Three-body selection The numbers indicate the upper limits on the signal cross-section for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Four-body selection The numbers indicate the upper limits on the signal cross-section for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Two-body selection. Background fit results for the $inclusive$ SRs. The Others category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Note that the individual uncertainties can be correlated, and do not necessarily add up quadratically to the total background uncertainty.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=600~ GeV$ and $m(\tilde{\chi}^0_1)=400~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the scalar signal model $t\bar{t} + \phi $ with $m(\phi)=150~ GeV$ and $m(\chi)=1~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the pseudoscalar signal model $t\bar{t} + a $ with $m(a)=150~ GeV$ and $m(\chi)=1~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=385~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=400~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=430~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=460~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=400~ GeV$ and $m(\tilde{\chi}^0_1)=380~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=460~ GeV$ and $m(\tilde{\chi}^0_1)=415~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=400~ GeV$ and $m(\tilde{\chi}^0_1)=320~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
A search for charged Higgs bosons decaying into $W^\pm W^\pm$ or $W^\pm Z$ bosons is performed, involving experimental signatures with two leptons of the same charge, or three or four leptons with a variety of charge combinations, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The search is guided by a type-II seesaw model that extends the scalar sector of the Standard Model with a scalar triplet, leading to a phenomenology that includes doubly and singly charged Higgs bosons. Two scenarios are explored, corresponding to the pair production of doubly charged $H^{\pm\pm}$ bosons, or the associated production of a doubly charged $H^{\pm\pm}$ boson and a singly charged $H^\pm$ boson. No significant deviations from the Standard Model predictions are observed. $H^{\pm\pm}$ bosons are excluded at 95% confidence level up to 350 GeV and 230 GeV for the pair and associated production modes, respectively.
Distribution of $E_{T}^{miss}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $\Delta R_{\ell^{\pm}\ell^{\pm}}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $M_{jets}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $S$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $E_{T}^{miss}$, which is one of the discriminating variables used to define the $3\ell$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $\Delta R_{\ell^{\pm}\ell^{\pm}}$, which is one of the discriminating variables used to define the $3\ell$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $m_{x\ell}$ ($x$=3), which is one of the discriminating variables used to define the $3\ell$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $p_{T}^{leading jet}$, which is one of the discriminating variables used to define the $3\ell$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $E_{T}^{miss}$, which is one of the discriminating variables used to define the $4\ell$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $\Delta R_{\ell^{\pm}\ell^{\pm}}^{min}$, which is one of the discriminating variables used to define the $4\ell$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $m_{x\ell}$ ($x$=4), which is one of the discriminating variables used to define the $4\ell$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Distribution of $p_{T}^{\ell_{1}}$, which is one of the discriminating variables used to define the $4\ell$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.
Contributions from different categories of uncertainties relative to the expected background yields in the defined SRs, as obtained after performing the likelihood ratio test discussed in Section 9 in the paper. The uncertainties are shown for the combination of the individual channels of the $2\ell^{sc}$, $3\ell$ and $4\ell$ SRs. The SRs are indicated along the horizontal axis. In the HEPData entry, the x-axis is simplified for easier visualisation. The first number indicates the sub channel (2:$2\ell^{sc}$, 3:$3\ell$, 4:$4\ell$), while the second number indicates the mass point (2:200, 3:300, 4:400, 5:500).
Data event yields compared with the expected contributions from relevant background sources, for the combination of the individual channels of the $2\ell^{sc}$, $3\ell$ and $4\ell$ SRs. The total uncertainties in the expected event yields are shown as the hatched bands. The SRs are indicated along the horizontal axis. In the HEPData entry, the x-axis is simplified for easier visualisation. The first number indicates the sub channel (2:$2\ell^{sc}$, 3:$3\ell$, 4:$4\ell$), while the second number indicates the mass point (2:200, 3:300, 4:400, 5:500).
The $E_{T}^{miss}$ distribution for the SRs of the $m_{H^{\pm\pm}} = 300~GeV$ signal mass hypothesis, where the selection requirement on $E_{T}^{miss}$ has been removed. In the attached plot, the signals are stacked on top of the backgrounds while individuals contributions of the $2\ell^{sc}$ channel are shown in HEPData. The last bin, isolated by a vertical red dashed line, is inclusive and corresponds to the SR.
The $E_{T}^{miss}$ distribution for the SRs of the $m_{H^{\pm\pm}} = 300~GeV$ signal mass hypothesis, where the selection requirement on $E_{T}^{miss}$ has been removed. In the attached plot, the signals are stacked on top of the backgrounds while individuals contributions of the $3\ell$ channel are shown in HEPData. The last bin, isolated by a vertical red dashed line, is inclusive and corresponds to the SR.
The $E_{T}^{miss}$ distribution for the SRs of the $m_{H^{\pm\pm}} = 300~GeV$ signal mass hypothesis, where the selection requirement on $E_{T}^{miss}$ has been removed. In the attached plot, the signals are stacked on top of the backgrounds while individuals contributions of the $4\ell$ channel are shown in HEPData. The last bin, isolated by a vertical red dashed line, is inclusive and corresponds to the SR.
Observed and expected upper limits of the $H^{\pm\pm}$ pair production cross section times branching fraction at 95% CL obtained from the combination of 2$\ell^{sc}$, 3$\ell$ and 4$\ell$ channels. The region above the observed limit is excluded by the measurement. The bands represent the expected exclusion curves within one and two standard deviations.
The theoretical prediction of Figure 9(a) in the paper.
Observed and expected upper limits of the $H^{\pm\pm}$ and $H^{\pm}$ production cross section times branching fraction at 95% CL obtained from the combination of 2$\ell^{sc}$, 3$\ell$ and 4$\ell$ channels. The region above the observed limit is excluded by the measurement. The bands represent the expected exclusion curves within one and two standard deviations.
The theoretical prediction of Figure 9(b) in the paper.
Data event yields compared with the estimated background in the $m_{H^{\pm\pm}} = 200~GeV$ or $m_{H^{\pm\pm}} = 220~GeV$ SRs. SFOC 0 and SFOC 1,2 refer to the number of same-flavour opposite charge lepton pairs. The total uncertainties in the estimated background yields are shown as the hashed bands. In the HEPData entry, the x-axis is simplified for easier visualisation (1:$e^{\pm}e^{\pm}$, 2:$e^{\pm}\mu^{\pm}$, 3:$\mu^{\pm}\mu^{\pm}$, 4:SFOC 0, 5:SFOC 1,2, 6:$4\ell$).
Data event yields compared with the estimated background in the $m_{H^{\pm\pm}} = 300~GeV$ or $m_{H^{\pm\pm}} = 350~GeV$ SRs. SFOC 0 and SFOC 1,2 refer to the number of same-flavour opposite charge lepton pairs. The total uncertainties in the estimated background yields are shown as the hashed bands. In the HEPData entry, the x-axis is simplified for easier visualisation (1:$e^{\pm}e^{\pm}$, 2:$e^{\pm}\mu^{\pm}$, 3:$\mu^{\pm}\mu^{\pm}$, 4:SFOC 0, 5:SFOC 1,2, 6:$4\ell$).
Data event yields compared with the estimated background in the $m_{H^{\pm\pm}} = 400~GeV$ or $m_{H^{\pm\pm}} = 450~GeV$ SRs. SFOC 0 and SFOC 1,2 refer to the number of same-flavour opposite charge lepton pairs. The total uncertainties in the estimated background yields are shown as the hashed bands. In the HEPData entry, the x-axis is simplified for easier visualisation (1:$e^{\pm}e^{\pm}$, 2:$e^{\pm}\mu^{\pm}$, 3:$\mu^{\pm}\mu^{\pm}$, 4:SFOC 0, 5:SFOC 1,2, 6:$4\ell$).
Data event yields compared with the estimated background in the $m_{H^{\pm\pm}} = 500~GeV$ or $m_{H^{\pm\pm}} = 550~GeV$ or $m_{H^{\pm\pm}} = 600~GeV$ SRs. SFOC 0 and SFOC 1,2 refer to the number of same-flavour opposite charge lepton pairs. The total uncertainties in the estimated background yields are shown as the hashed bands. In the HEPData entry, the x-axis is simplified for easier visualisation (1:$e^{\pm}e^{\pm}$, 2:$e^{\pm}\mu^{\pm}$, 3:$\mu^{\pm}\mu^{\pm}$, 4:SFOC 0, 5:SFOC 1,2, 6:$4\ell$).
A search for pair production of third-generation scalar leptoquarks decaying into a top quark and a $\tau$-lepton is presented. The search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. Events are selected if they have one light lepton (electron or muon) and at least one hadronically decaying $\tau$-lepton, or at least two light leptons. In addition, two or more jets, at least one of which must be identified as containing $b$-hadrons, are required. Six final states, defined by the multiplicity and flavour of lepton candidates, are considered in the analysis. Each of them is split into multiple event categories to simultaneously search for the signal and constrain several leading backgrounds. The signal-rich event categories require at least one hadronically decaying $\tau$-lepton candidate and exploit the presence of energetic final-state objects, which is characteristic of signal events. No significant excess above the Standard Model expectation is observed in any of the considered event categories, and 95% CL upper limits are set on the production cross section as a function of the leptoquark mass, for different assumptions about the branching fractions into $t\tau$ and $b\nu$. Scalar leptoquarks decaying exclusively into $t\tau$ are excluded up to masses of 1.43 TeV while, for a branching fraction of 50% into $t\tau$, the lower mass limit is 1.22 TeV.
Selection efficiency times acceptance summed over the seven signal regions as a function of $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$, assuming B = 1.
Summary of the observed and expected 95% CL upper limits on the cross section for $\mathrm{LQ}_{3}^{\mathrm{d}}$ pair production as a function of $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$ under the assumptions of B=1.
Summary of the observed and expected 95% CL upper limits on B as a function of $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$.
Cutflow of the preselection requirements (see Section 5) for $\mathrm{LQ}_{3}^{\mathrm{d}}$ signals with $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$=0.9, 1.1, and 1.3 TeV, assuming B=1. The yields correspond to an integrated luminosity of 139 fb$^{-1}$.
Cutflow of the signal region requirements in 1$\ell+\geq 1\tau$ channel (see Table 3) for $\mathrm{LQ}_{3}^{\mathrm{d}}$ signals with $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$=0.9, 1.1, and 1.3 TeV, assuming B=1. Events that satisfy the preselection requirements are considered. The yields correspond to an integrated luminosity of 139 fb$^{-1}$.
Cutflow of the signal region requirements in the 2$\ell$OS+$\geq 1\tau$ channel (see Table 4) for $\mathrm{LQ}_{3}^{\mathrm{d}}$ signals with $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$=0.9, 1.1, and 1.3 TeV, assuming B=1. Events that satisfy the preselection requirements are considered. The yields correspond to an integrated luminosity of 139 fb$^{-1}$.
Cutflow of the signal region requirements in the $2\ell$SS/$3\ell+\geq 1\tau$ channel (see Table 5) for $\mathrm{LQ}_{3}^{\mathrm{d}}$ signals with $m_{\mathrm{LQ}_{3}^{\mathrm{d}}}$=0.9, 1.1, and 1.3 TeV, assuming B=1. Events that satisfy the preselection requirements are considered. In this channel, two signal regions (SR-L and SR-H) are defined based on $p_{\mathrm{T}, 1}^{\tau}$, with SR-L and SR-H requiring $125< p_{\mathrm{T}, 1}^{\tau} < 225$ GeV and $p_{\mathrm{T}, 1}^{\tau}>225$ GeV, respectively. The yields correspond to an integrated luminosity of 139 fb$^{-1}$.
A search is performed for the electroweak pair production of charginos and associated production of a chargino and neutralino, each of which decays through an $R$-parity-violating coupling into a lepton and a $W$, $Z$, or Higgs boson. The trilepton invariant-mass spectrum is constructed from events with three or more leptons, targeting chargino decays that include an electron or muon and a leptonically decaying $Z$ boson. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collision data produced by the Large Hadron Collider at a center-of-mass energy of $\sqrt{s}$ = 13 TeV and collected by the ATLAS experiment between 2015 and 2018. The data are found to be consistent with predictions from the Standard Model. The results are interpreted as limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model. Limits are also set on the production of charginos and neutralinos for a Minimal Supersymmetric Standard Model with an approximate $B$-$L$ symmetry. Charginos and neutralinos with masses between 100 GeV and 1100 GeV are excluded depending on the assumed decay branching fractions into a lepton (electron, muon, or $\tau$-lepton) plus a boson ($W$, $Z$, or Higgs).
This is the HEPData space for the trilepton resonance wino search, the full resolution figures can be found here https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-36/. The full statistical likelihoods have been provided for this analysis. They can be downloaded by clicking on the purple 'Resources' buttun above where they can then be found in the 'Common Resources' area. A detailed README for how to use the likelihoods is also included in this download. <b>Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Obs.%20data%20vs%20SM%20bkg.%20exp.%20in%20CRs%20and%20VRs">Obs. data vs SM bkg. exp. in CRs and VRs</a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Obs_0%20">$\ell=(e, \mu, \tau)$, Obs_0 </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up%20">$\ell=(e, \mu, \tau)$, Obs_0_Up </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down%20">$\ell=(e, \mu, \tau)$, Obs_0_Down </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Exp_0%20">$\ell=(e, \mu, \tau)$, Exp_0 </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up%20">$\ell=(e, \mu, \tau)$, Exp_0_Up </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down%20">$\ell=(e, \mu, \tau)$, Exp_0_Down </a> <li><a href="?table=$\ell=e$,%20Obs_0%20">$\ell=e$, Obs_0 </a> <li><a href="?table=$\ell=e$,%20Obs_0_Up%20">$\ell=e$, Obs_0_Up </a> <li><a href="?table=$\ell=e$,%20Obs_0_Down%20">$\ell=e$, Obs_0_Down </a> <li><a href="?table=$\ell=e$,%20Exp_0%20">$\ell=e$, Exp_0 </a> <li><a href="?table=$\ell=e$,%20Exp_0_Up%20">$\ell=e$, Exp_0_Up </a> <li><a href="?table=$\ell=e$,%20Exp_0_Down%20">$\ell=e$, Exp_0_Down </a> <li><a href="?table=$\ell=\mu$,%20Obs_0%20">$\ell=\mu$, Obs_0 </a> <li><a href="?table=$\ell=\mu$,%20Obs_0_Up%20">$\ell=\mu$, Obs_0_Up </a> <li><a href="?table=$\ell=\mu$,%20Obs_0_Down%20">$\ell=\mu$, Obs_0_Down </a> <li><a href="?table=$\ell=\mu$,%20Exp_0%20">$\ell=\mu$, Exp_0 </a> <li><a href="?table=$\ell=\mu$,%20Exp_0_Up%20">$\ell=\mu$, Exp_0_Up </a> <li><a href="?table=$\ell=\mu$,%20Exp_0_Down%20">$\ell=\mu$, Exp_0_Down </a> <li><a href="?table=$\ell=\tau$,%20Obs_0%20">$\ell=\tau$, Obs_0 </a> <li><a href="?table=$\ell=\tau$,%20Obs_0_Up%20">$\ell=\tau$, Obs_0_Up </a> <li><a href="?table=$\ell=\tau$,%20Obs_0_Down%20">$\ell=\tau$, Obs_0_Down </a> <li><a href="?table=$\ell=\tau$,%20Exp_0%20">$\ell=\tau$, Exp_0 </a> <li><a href="?table=$\ell=\tau$,%20Exp_0_Up%20">$\ell=\tau$, Exp_0_Up </a> <li><a href="?table=$\ell=\tau$,%20Exp_0_Down%20">$\ell=\tau$, Exp_0_Down </a> </ul> <b>Triangle Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 600 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 600 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 600 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 600 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 600 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 600 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 600 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 600 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 700 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 700 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 800 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 800 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 800 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 800 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 800 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 800 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 800 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 800 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 900 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 900 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 900 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 900 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 900 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 900 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 900 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 900 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 600 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 600 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 600 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 600 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 600 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 600 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 600 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 600 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 700 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 700 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 800 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 800 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 800 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 800 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 800 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 800 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 800 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 800 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 900 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 900 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 900 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 900 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 900 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 900 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 900 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 900 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 200 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 200 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 200 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 200 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 200 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 200 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 200 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 200 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 300 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 300 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 300 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 300 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 300 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 300 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 300 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 300 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 400 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 400 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 400 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 400 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 400 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 400 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 400 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 400 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 500 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 500 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 500 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 500 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 500 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 500 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 500 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 500 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ObsLimVal">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, ObsLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ExpLimVal">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ObsLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ExpLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ObsLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ExpLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ExpLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, SRFR, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, SRFR, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, SRFR, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, SRFR, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, SRFR, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, SRFR, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20ObsLimVal">Triangle, SRFR, 700 GeV, $\ell=e$, ObsLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20ExpLimVal">Triangle, SRFR, 700 GeV, $\ell=e$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20ObsLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20ExpLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20ObsLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20ExpLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, ExpLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, SRFR, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, SRFR, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, SRFR, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, SRFR, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, SRFR, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, SRFR, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20ObsLimVal">Triangle, SRFR, 700 GeV, $\ell=\mu$, ObsLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20ExpLimVal">Triangle, SRFR, 700 GeV, $\ell=\mu$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ObsLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ExpLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ObsLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ExpLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, ExpLimVal</a> </ul> <b>Upper limits:</b> <ul display="inline-block"> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20upperLimit_XS_gr%20">$\ell=(e, \mu, \tau)$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20expectedUpperLimit_XS_gr%20">$\ell=(e, \mu, \tau)$, expectedUpperLimit_XS_gr </a> <li><a href="?table=$\ell=e$,%20upperLimit_XS_gr%20">$\ell=e$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=e$,%20expectedUpperLimit_XS_gr%20">$\ell=e$, expectedUpperLimit_XS_gr </a> <li><a href="?table=$\ell=\mu$,%20upperLimit_XS_gr%20">$\ell=\mu$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=\mu$,%20expectedUpperLimit_XS_gr%20">$\ell=\mu$, expectedUpperLimit_XS_gr </a> <li><a href="?table=$\ell=\tau$,%20upperLimit_XS_gr%20">$\ell=\tau$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=\tau$,%20expectedUpperLimit_XS_gr%20">$\ell=\tau$, expectedUpperLimit_XS_gr </a> </ul> <b>Kinematic distributions:</b> <ul display="inline-block"> <li><a href="?table=Variable%20bin%20$m_{Z\ell}$%20for%20SRFR%20">Variable bin $m_{Z\ell}$ for SRFR </a> <li><a href="?table=Variable%20bin%20$m_{Z\ell}$%20for%20SR4$\ell$%20">Variable bin $m_{Z\ell}$ for SR4$\ell$ </a> <li><a href="?table=Variable%20bin%20$m_{Z\ell}$%20for%20SR3$\ell$%20">Variable bin $m_{Z\ell}$ for SR3$\ell$ </a> <li><a href="?table=N-1%20for%20SR3$\ell$,%20$E^{miss}_{T}$%20">N-1 for SR3$\ell$, $E^{miss}_{T}$ </a> <li><a href="?table=N-1%20for%20SR3$\ell$,%20$m^{min}_{T}$%20">N-1 for SR3$\ell$, $m^{min}_{T}$ </a> <li><a href="?table=N-1%20for%20SR4$\ell$,%20$E^{miss,SF}_{T}$%20">N-1 for SR4$\ell$, $E^{miss,SF}_{T}$ </a> <li><a href="?table=N-1%20for%20SRFR,%20$m^{asym}_{Z\ell}$%20">N-1 for SRFR, $m^{asym}_{Z\ell}$ </a> <li><a href="?table=$m_{Z\ell}$%20for%20SRFR%20">$m_{Z\ell}$ for SRFR </a> <li><a href="?table=$m_{Z\ell}$%20for%20SR4$\ell$%20">$m_{Z\ell}$ for SR4$\ell$ </a> <li><a href="?table=$m_{Z\ell}$%20for%20SR3$\ell$%20">$m_{Z\ell}$ for SR3$\ell$ </a> <li><a href="?table=$L_{T}$%20for%20SR4$\ell$%20">$L_{T}$ for SR4$\ell$ </a> </ul> <b>Cut flows:</b> <ul display="inline-block"> <li><a href="?table=Yields%20Table">Yields Table</a> <li><a href="?table=Model-Independent%20Results%20Table,%20SRFR">Model-Independent Results Table, SRFR</a> <li><a href="?table=Model-Independent%20Results%20Table,%20SR4$\ell$">Model-Independent Results Table, SR4$\ell$</a> <li><a href="?table=Model-Independent%20Results%20Table,%20SR3$\ell$">Model-Independent Results Table, SR3$\ell$</a> <li><a href="?table=Cutflow%20Table">Cutflow Table</a> </ul> <b>Acceptances and Efficiencies:</b> <ul display="inline-block"> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Acceptance in the SRFR region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$e$">Acceptance in the SRFR region with $\ell=$$e$</a> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$\mu$">Acceptance in the SRFR region with $\ell=$$\mu$</a> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$\tau$">Acceptance in the SRFR region with $\ell=$$\tau$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Acceptance in the SR4$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$e$">Acceptance in the SR4$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\mu$">Acceptance in the SR4$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\tau$">Acceptance in the SR4$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Acceptance in the SR3$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$e$">Acceptance in the SR3$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\mu$">Acceptance in the SR3$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\tau$">Acceptance in the SR3$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Efficiency in the SRFR region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$e$">Efficiency in the SRFR region with $\ell=$$e$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$\mu$">Efficiency in the SRFR region with $\ell=$$\mu$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$\tau$">Efficiency in the SRFR region with $\ell=$$\tau$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Efficiency in the SR4$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$e$">Efficiency in the SR4$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\mu$">Efficiency in the SR4$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\tau$">Efficiency in the SR4$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Efficiency in the SR3$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$e$">Efficiency in the SR3$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\mu$">Efficiency in the SR3$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\tau$">Efficiency in the SR3$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Triangle,%20Acceptance%20in%20SRFR,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Acceptance in SRFR, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Acceptance%20in%20SR4$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Acceptance in SR4$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Acceptance%20in%20SR3$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Acceptance in SR3$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Efficiency%20in%20SRFR,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Efficiency in SRFR, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Efficiency%20in%20SR4$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Efficiency in SR4$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Efficiency%20in%20SR3$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Efficiency in SR3$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20by%20Final%20State%20in%20SRFR">Acceptance by Final State in SRFR</a> <li><a href="?table=Acceptance%20by%20Final%20State%20in%20SR4$\ell$">Acceptance by Final State in SR4$\ell$</a> <li><a href="?table=Acceptance%20by%20Final%20State%20in%20SR3$\ell$">Acceptance by Final State in SR3$\ell$</a> </ul>
The observed data and the SM background expectation in the CRs (pre-fit) and VRs (post-fit). The ''Other'' category mostly consists of tW Z, ttW, and tZ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the fractional difference between the observed data and expected yields for the CRs and the significance of the difference for the VRs, computed following the profile likelihood method described in Ref. [arXiv: physics/0702156].
The observed yields and post-fit background expectations in SRFR, SR4$\ell$, and SR3$\ell$, shown inclusively and when the direct lepton from a $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ decay is required to be an electron or muon. The Other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. Uncertainties on the background expectation include combined statistical and systematic uncertainties. The individual uncertainties may be correlated and do not necessarily add in quadrature to equal the total background uncertainty.
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SRFR. The $m_{Z\ell}$ binning is the same as used in the fit and the yield is normalized to the bin width, with the last bin normalized using a width of 200 GeV. the "Other" category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the differences between the observed data and expected yields, computed following the profile likelihood method described in ref.[arxiv: physics/0702156]
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR4$\ell$. The $m_{Z\ell}$ binning is the same as used in the fit and the yield is normalized to the bin width, with the last bin normalized using a width of 200 GeV. the "Other" category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the differences between the observed data and expected yields, computed following the profile likelihood method described in ref.[arxiv: physics/0702156]
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR3$\ell$. The $m_{Z\ell}$ binning is the same as used in the fit and the yield is normalized to the bin width, with the last bin normalized using a width of 200 GeV. the "Other" category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the differences between the observed data and expected yields, computed following the profile likelihood method described in ref.[arxiv: physics/0702156]
$E^{miss}_{T}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
$m^{min}_{T}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
$E^{miss,SF}_{T}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
$m^{asym}_{Z\ell}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
Model-independent results where each row targets one $m_{Z\ell}$ bin of one SR and probes scenarios where a generic beyond-the-SM process is assumed to contribute only to that $m_{Z\ell}$ bin. The first two columns refer to the signal region and $m_{Z\ell}$ bin probed, while the third and fourth columns show the observed ($N{obs}$) and expected ($N{exp}$) event yields. The expected yields are obtained using a background-only fit of the CRs, and the errors include statistical and systematic uncertainties. The fifth and sixth columns show the observed 95% CL upper limit on the visible cross section ($\langle \epsilon \sigma \rangle^{95}_{obs}$) and on the number of signal events ($S^{95}_{obs}$), while the seventh column shows the expected 95% CL upper limit on the number of signal events ($S^{95}_{exp}$) with the associated $1~\sigma$ uncertainties. The last column provides the discovery $p$-value and significance ($Z$) of any excess of data above background expectation. Events for which the observed yield is less than the expected yield are capped at a $p$-value of 0.5.
Model-independent results where each row targets one $m_{Z\ell}$ bin of one SR and probes scenarios where a generic beyond-the-SM process is assumed to contribute only to that $m_{Z\ell}$ bin. The first two columns refer to the signal region and $m_{Z\ell}$ bin probed, while the third and fourth columns show the observed ($N{obs}$) and expected ($N{exp}$) event yields. The expected yields are obtained using a background-only fit of the CRs, and the errors include statistical and systematic uncertainties. The fifth and sixth columns show the observed 95% CL upper limit on the visible cross section ($\langle \epsilon \sigma \rangle^{95}_{obs}$) and on the number of signal events ($S^{95}_{obs}$), while the seventh column shows the expected 95% CL upper limit on the number of signal events ($S^{95}_{exp}$) with the associated $1~\sigma$ uncertainties. The last column provides the discovery $p$-value and significance ($Z$) of any excess of data above background expectation. Events for which the observed yield is less than the expected yield are capped at a $p$-value of 0.5.
Model-independent results where each row targets one $m_{Z\ell}$ bin of one SR and probes scenarios where a generic beyond-the-SM process is assumed to contribute only to that $m_{Z\ell}$ bin. The first two columns refer to the signal region and $m_{Z\ell}$ bin probed, while the third and fourth columns show the observed ($N{obs}$) and expected ($N{exp}$) event yields. The expected yields are obtained using a background-only fit of the CRs, and the errors include statistical and systematic uncertainties. The fifth and sixth columns show the observed 95% CL upper limit on the visible cross section ($\langle \epsilon \sigma \rangle^{95}_{obs}$) and on the number of signal events ($S^{95}_{obs}$), while the seventh column shows the expected 95% CL upper limit on the number of signal events ($S^{95}_{exp}$) with the associated $1~\sigma$ uncertainties. The last column provides the discovery $p$-value and significance ($Z$) of any excess of data above background expectation. Events for which the observed yield is less than the expected yield are capped at a $p$-value of 0.5.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SRFR. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.The bottom panel shows the ratio between the data and the post-fit background prediction
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR4$\ell$. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.The bottom panel shows the ratio between the data and the post-fit background prediction
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR3$\ell$. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.The bottom panel shows the ratio between the data and the post-fit background prediction
The observed data and pre-fit SM background expectation as a function of $L_{T}$ in SR4$\ell$. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. Only statistical uncertainties on the data and background expecation are shown.The bottom panel shows the ratio between the data and the background prediction
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Summary of event selections for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 200, 500, and 800 GeV, shown separately for the $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1}$ and $\tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ processes. The yields are normalized to a luminosity of $139 fb^{-1}$, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied at the end. After the initial selections, the yields are separated into SRFR, SR4$\ell$, and SR3$\ell$ regions, and then further separated into the $e$ and $\mu$ channels. Democratic branching fractions into bosons (W, Z, and Higgs) and leptons ($e$, $\mu$, and $\tau$ are used, with no branching fraction reweighting performed. The generator filters are discussed in detail in Section 3. The computing preselection requires at least two electrons or muons of uncalibrated pT > 9 GeV and |$\eta$| < 2.6.
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The truth-level acceptances for each decay mode of the generated $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ signals in the SRFR region. Results are given as a function of $\tilde\chi^{0}_{1}/\tilde\chi^{0}_{1}$ mass and the final state boson and lepton combination.
The truth-level acceptances for each decay mode of the generated $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ signals in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{0}_{1}/\tilde\chi^{0}_{1}$ mass and the final state boson and lepton combination.
The truth-level acceptances for each decay mode of the generated $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ signals in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{0}_{1}/\tilde\chi^{0}_{1}$ mass and the final state boson and lepton combination.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.