Date

Measurement of the Z$γ$ production cross section and search for anomalous neutral triple gauge couplings in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SMP-22-009, 2026.
Inspire Record 3109635 DOI 10.17182/hepdata.167736

A measurement of the fiducial cross section of the associated production of a Z boson and a high-$p_\mathrm{T}$ photon, where the Z decays to two neutrinos, and a search for anomalous triple gauge couplings are reported. The results are based on data collected by the CMS experiment at the LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV during 2016$-$2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The fiducial Z$γ$ cross section, where a photon with a $p_\mathrm{T}$ greater than 225 GeV is produced in association with a Z, and the Z decays to a $ν\barν$ pair (Z($ν\barν$)$γ$), is measured to be 23.3$^{+1.4}_{-1.3}$ fb, in agreement, within uncertainties, with the standard model prediction. The differential cross section as a function of the photon $p_\mathrm{T}$ has been measured and compared with standard model predictions computed at next-to-leading and at next-to-next-to-leading order in perturbative quantum chromodynamics. Constraints have been placed on the presence of anomalous couplings that affect the ZZ$γ$ and Z$γγ$ vertex using the $p_\mathrm{T}$ spectrum of the photons. The observed 95% confidence level intervals for $CP$-conserving $h_3^γ$ and $h_4^γ$ are determined to be ($-$3.4, 3.5) $\times$ 10$^{-4}$ and ($-$6.8, 6.8) $\times$ 10$^{-7}$, and for $h_3^\mathrm{Z}$ and $h_4^\mathrm{Z}$ they are ($-$2.2, 2.2) $\times$ 10$^{-4}$ and ($-$4.1, 4.2) $\times$ 10$^{-7}$, respectively. These are the strictest limits to date on $h_3^γ$, $h_3^\mathrm{Z}$ and $h_4^\mathrm{Z}$.

5 data tables

Post-fit reconstruction-level photon transverse momentum $p_{T}^{\gamma}$ distribution in the ECAL barrel signal region. The yields correspond to the post-fit expectation from the maximum-likelihood fit used in the analysis, with uncertainties reflecting the post-fit total (stat+syst) uncertainty per bin. Data correspond to the full Run-2 dataset (138 fb$^{-1}$ at $\sqrt{s}=13$ TeV).

Post-fit reconstruction-level photon transverse momentum $p_{T}^{\gamma}$ distribution in the ECAL endcaps signal region. The yields correspond to the post-fit expectation from the maximum-likelihood fit used in the analysis, with uncertainties reflecting the post-fit total (stat+syst) uncertainty per bin. Data correspond to the full Run-2 dataset (138 fb$^{-1}$ at $\sqrt{s}=13$ TeV).

Measured and predicted fiducial cross sections (fb) in the EB, EE, and combined phase space. The fiducial phase space definition follows the analysis selection in the paper. Predictions are shown at NLO (MADGRAPH5_aMC@NLO) and NNLO (MATRIX).

More…

Search for a new neutral gauge boson produced in association with one or two b jets and decaying into a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-EXO-22-006, 2025.
Inspire Record 3084285 DOI 10.17182/hepdata.165428

A search for a new neutral gauge boson, Z', produced in association with one or two jets, including at least one b jet, and decaying into a pair of muons is presented. The analysis uses proton-proton collision data collected with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. No significant deviation from background expectations is observed. Upper limits at 95% confidence level on the product of cross section, branching fraction to dimuons, acceptance, and efficiency, from 0.2 to 2 fb, are set for Z' boson masses between 125 and 350 GeV. Process-dependent products of acceptance and efficiency, and model-independent limits on the signal yield are provided. These are the only results to date in the 125$-$200 GeV mass range and the most stringent for b quark fusion production modes in the 200$-$350 GeV range, complementing inclusive Z' boson searches.

13 data tables

Distributions of $m_{\ell\ell}$ in the $\mathrm{SR_{b}^{mm}}$ SR. Events are divided by the bin width. Simulated signal shapes for $Z'$ boson masses of 125, 200, and 350 GeV are shown. The "Stat + syst" band shows the envelope of the fit variations with statistical uncertainties. The ratio of the nominal MC background values (dashed line) and data to the ABCD prediction is shown as a dashed line in the ratio plot. The MC background uncertainties are not shown for visual clarity.

Distributions of $m_{\ell\ell}$ in the $\mathrm{SR_{b+\textrm{j}/b}^{mm}}$ SR. Events are divided by the bin width. Simulated signal shapes for $Z'$ boson masses of 125, 200, and 350 GeV are shown. The "Stat + syst" band shows the envelope of the fit variations with statistical uncertainties. The ratio of the nominal MC background values (dashed line) and data to the ABCD prediction is shown as a dashed line in the ratio plot. The MC background uncertainties are not shown for visual clarity.

Data vs. the ABCD method background prediction for 2016 in $\mathrm{SR_{b}^{mm}}$. Events are divided by the bin width, hence fractional data counts. Error bars show statistical uncertainties of data. The blue band shows the propagated uncertainty of all individual fit variations in a given bin, which we consider to be uncorrelated. The lower panels show the ratio of the observed data to the background estimation.

More…

Jet fragmentation function and groomed substructure of bottom quark jets in proton-proton collisions at 5.02 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-HIN-24-005, 2025.
Inspire Record 3083430 DOI 10.17182/hepdata.156184

A measurement of the substructure of bottom quark jets (b jets) in proton-proton (pp) collisions is presented. The measurement uses data collected in pp collisions at $\sqrt{s}$ = 5.02 TeV recorded by the CMS experiment in 2017, corresponding to an integrated luminosity of 301$^{-1}$. An algorithm to identify and cluster the charged decay daughters of b hadrons is developed for this analysis, which facilitates the exposure of the gluon radiation pattern of b jets using iterative Cambridge-Aachen declustering. The soft-drop-groomed jet radius, $R_\mathrm{g}$, and momentum balance, $z_\mathrm{g}$, of b quark jets are presented. These observables can be used to test perturbative quantum chromodynamics predictions that account for mass effects. Because the b hadron is partially reconstructed from its charged decay daughters, only charged particles are used for the jet substructure studies. In addition, a jet fragmentation function, $z_\text{b,ch}$, is measured, which is defined as the distribution of the ratio of the transverse momentum ($p_\mathrm{T}$) of the partially reconstructed b hadron with respect to the charged-particle component of the jet $p_\mathrm{T}$. The substructure variable distributions are unfolded to the charged-particle level. The b jet substructure is compared to the substructure of jets in an inclusive jet sample that is dominated by light-quark and gluon jets in order to assess the role of the b quark mass. A strong suppression of emissions at small $R_\mathrm{g}$ values is observed for b jets when compared to inclusive jets, consistent with the dead-cone effect. The measurement is also compared with theoretical predictions from Monte Carlo event generators. This is the first substructure measurement of b jets that clusters together the b hadron decay daughters.

7 data tables

The groomed jet radius distribution of inclusive jets.

The groomed momentum balance distribution of inclusive jets.

The groomed jet radius distribution of b jets.

More…

Discovery of suppressed charged-particle production in ultrarelativistic oxygen-oxygen collisions

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-HIN-25-008, 2025.
Inspire Record 3068407 DOI 10.17182/hepdata.165512

A hot and dense state of nuclear matter, known as the quark-gluon plasma, is created in collisions of ultrarelativistic heavy nuclei. Highly energetic quarks and gluons, collectively referred to as partons, lose energy as they travel through this matter, leading to suppressed production of particles with large transverse momenta ($p_\mathrm{T}$). Conversely, high-$p_\mathrm{T}$ particle suppression has not been seen in proton-lead collisions, raising questions regarding the minimum system size required to observe parton energy loss. Oxygen-oxygen (OO) collisions examine a region of effective system size that lies between these two extreme cases. The CMS detector at the CERN LHC has been used to quantify charged-particle production in inclusive OO collisions for the first time via measurements of the nuclear modification factor ($R_\mathrm{AA}$). The $R_\mathrm{AA}$ is derived by comparing particle production to expectations based on proton-proton (pp) data and has a value of unity in the absence of nuclear effects. The data for OO and pp collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 5.36 TeV correspond to integrated luminosities of 6.1 nb$^{-1}$ and 1.02 pb$^{-1}$, respectively. The $R_\mathrm{AA}$ is below unity with a minimum of 0.69 $\pm$ 0.04 around $p_\mathrm{T}$ = 6 GeV. The data exhibit better agreement with theoretical models incorporating parton energy loss as compared to baseline models without energy loss.

3 data tables

Inclusive charged particle spectra for pp collisions at 5.36 TeV for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.

Inclusive charged particle spectra for OO collisions at 5.36 TeV for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.

Inclusive charged particle R_{AA} for 5.36 TeV OO collisions for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.


Search for light pseudoscalar boson pairs produced from Higgs boson decays using the 4$τ$ and 2$μ$2$τ$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-SUS-24-002, 2025.
Inspire Record 2959279 DOI 10.17182/hepdata.158360

A search for a pair of light pseudoscalar bosons (a$_1$) produced in the decay of the 125 GeV Higgs boson is presented. The analysis examines decay modes where one a$_1$ decays into a pair of tau leptons and the other decays into either another pair of tau leptons or a pair of muons. The a$_1$ boson mass probed in this study ranges from 4 to 15 GeV. The data sample was recorded by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponds to an integrated luminosity of 138 fb$^{-1}$. No excess above standard model (SM) expectations is observed. The study combines the 4$τ$ and 2$μ$2$τ$ channels to set upper limits at 95% confidence level (CL) on the product of the Higgs boson production cross section and the branching fraction to the 4$τ$ final state, relative to the Higgs boson production cross section predicted by the SM. In this interpretation, the a$_1$ boson is assumed to have Yukawa-like couplings to fermions, with coupling strengths proportional to the respective fermion masses. The observed (expected) upper limits range between 0.007 (0.011) and 0.079 (0.066) across the mass range considered. The results are also interpreted in the context of models with two Higgs doublets and an additional complex singlet field (2HD+S). The tightest constraints are obtained for the Type III 2HD+S model. In this case, assuming the Higgs boson production cross section equals the SM prediction, values of the branching ratio for the Higgs boson decay into a pair of a$_1$ bosons exceeding 16% are excluded at 95% CL for a$_1$ boson masses between 5 and 15 GeV and $\tanβ$ $\gt$ 2, with the exception of scenarios in which the a$_1$ boson mixes with charm or bottom quark-antiquark bound states.

13 data tables

The observed and expected upper limits at 95% confidence level on the product of the signal cross section and the branching fraction $\sigma (\mathrm{pp} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1\,\mathrm{a}_1) {\mathcal{B}}^{2} (\mathrm{a}_1 \to \tau \tau)$, relative to the inclusive Higgs boson production cross section $\sigma_\text{SM}$ predicted in the SM. The green and yellow bands indicate the regions containing 68% and 95% of the distribution of limits expected under the background-only hypothesis.

The observed and expected upper limits at 95% CLs on $\sigma (\mathrm{pp} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1\,\mathrm{a}_1)$, relative to $\sigma_\text{SM}$, as a function of $m_{\mathrm{a}_1}$ for Type I 2HD+S model ($\tan\beta$ independent).

The observed and expected upper limits at 95% CLs on $\sigma (\mathrm{pp} \to \mathrm{H}+\text{X}) {\mathcal{B}} (\mathrm{H} \to \mathrm{a}_1\,\mathrm{a}_1)$, relative to $\sigma_\text{SM}$, as a function of $m_{\mathrm{a}_1}$ for Type II 2HD+S model, $\tan\beta = 5$.

More…

Evidence of medium response to hard probes using correlations of Z bosons with hadrons in heavy ion collisions

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-HIN-23-006, 2025.
Inspire Record 2945894 DOI 10.17182/hepdata.156186

The first measurement of pseudorapidity and azimuthal angle distributions relative to the momentum vector of a Z boson for low transverse momentum ($p_\mathrm{T}$) charged hadrons in lead-lead (PbPb) collisions is presented. By studying the hadrons produced in an event with a high-$p_\mathrm{T}$ Z boson (40 $\lt$$p_\mathrm{T}$$\lt$ 350 GeV), the analysis probes how the quark-gluon plasma (QGP) medium created in these collisions affects the parton recoiling opposite to the Z boson. Utilizing PbPb data at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}}$ = 5.02 TeV from 2018 with an integrated luminosity of 1.67 nb$^{-1}$ and proton-proton (pp) data at the same energy from 2017 with 301 pb$^{-1}$, the distributions are examined in bins of charged-hadron $p_\mathrm{T}$. A significant modification of the distributions for charged hadrons in the range 1$\lt$$p_\mathrm{T}$$\lt$ 2 GeV in PbPb collisions is observed when compared to reference measurements from pp collisions. The data provide new information about the correlation between hard and soft particles in heavy ion collisions, which can be used to test predictions of various jet quenching models. The results are consistent with expectations of a hydrodynamic wake created when the QGP is depleted of energy by the parton propagating through it. Based on comparisons of PbPb data with pp references and predictions from theoretical models, this Letter presents the first evidence of medium-recoil and medium-hole effects caused by a hard probe.

30 data tables

The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in pp collisions.

The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in pp collisions.

The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in pp collisions.

More…

Version 2
Search for the nonresonant and resonant production of a Higgs boson in association with an additional scalar boson in the $γγττ$ final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-012, 2025.
Inspire Record 2940190 DOI 10.17182/hepdata.158371

The results of a search for the production of two scalar bosons in final states with two photons and two tau leptons are presented. The search considers both nonresonant production of a Higgs boson pair, HH, and resonant production via a new boson X which decays either to HH or to H and a new scalar Y. The analysis uses up to 138 fb$^{-1}$ of proton-proton collision data, recorded between 2016 and 2018 by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV. No evidence for signal is found in the data. For the nonresonant production, the observed (expected) upper limit at 95% confidence level (CL) on the HH production cross section is set at 930 (740) fb, corresponding to 33 (26) times the standard model prediction. At 95% CL, HH production is observed (expected) to be excluded for values of $κ_λ$ outside the range between $-$12 ($-$9.4) and 17 (15). Observed (expected) upper limits at 95% CL for the XHH cross section are found to be within 160 to 2200 (200 to 1800) fb, depending on the mass of X. In the X $\to$ Y($γγ$)H($ττ$) search, the observed (expected) upper limits on the product of the production cross section and decay branching fractions vary between 0.059$-$1.2 fb (0.087$-$0.68 fb). For the X $\to$ Y($γγ$)H($ττ$) search the observed (expected) upper limits on the product of the production cross section and Y $to$ $γγ$ branching fraction vary between 0.69$-$15 fb (0.73$-$8.3 fb) in the low Y mass search, tightening constraints on the next-to-minimal supersymmetric standard model, and between 0.64$-$10 fb (0.70$-$7.6 fb) in the high Y mass search.

13 data tables

Observed and expected 95% CL upper limits on the nonresonant $\mathrm{HH}$ production cross section, $\sigma(\mathrm{pp} \to \mathrm{HH})$, as a function of the Higgs boson self-coupling strength modifier $\kappa_\lambda$. All Higgs boson couplings other than $\lambda$ are assumed to have the values predicted in the SM.

Observed and expected 95% CL upper limits on the nonresonant $\mathrm{HH}$ production cross section, $\sigma(\mathrm{pp} \to \mathrm{HH})$, for thirteen different BSM benchmark scenarios from [arXiv:1507.02245, arXiv:1806.05162] which consider different values of the couplings, $\kappa_\lambda$, $\kappa_t$, $c_{2g}$, $c_g$, and $c_2$ (defined in Table 1).

Observed and expected 95% CL upper limits on the cross section for the resonant production of a new spin-0 particle $\mathrm{X}^{(0)}$ which decays to Higgs boson pairs, $\sigma(\mathrm{pp} \to \mathrm{X}^{(0)} \to \mathrm{HH})$, given for different values of $m_\mathrm{X}$ in the range 260-1000 GeV. Theoretical predictions for this cross section assuming that $\mathrm{X}^{(0)}$ is a radion particle with $\Lambda_R = 2$ TeV and 3 TeV are also provided [arXiv:1404.0102].

More…

Search for top squarks in final states with many light-flavor jets and 0, 1, or 2 charged leptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-SUS-23-001, 2025.
Inspire Record 2933169 DOI 10.17182/hepdata.156817

Several new physics models including versions of supersymmetry (SUSY) characterized by $R$-parity violation (RPV) or with additional hidden sectors predict the production of events with top quarks, low missing transverse momentum, and many additional quarks or gluons. The results of a search for top squarks decaying to two top quarks and six additional light-flavor quarks or gluons are reported. The search employs a novel machine learning method for background estimation from control samples in data using decorrelated discriminators. The search is performed using events with 0, 1, or 2 electrons or muons in conjunction with at least six jets. No requirement is placed on the magnitude of the missing transverse momentum. The result is based on a sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to 138 fb$^{-1}$ of integrated luminosity collected with the CMS detector at the LHC in 2016$-$2018. The data are used to determine upper limits on the top squark pair production cross section in the frameworks of RPV and stealth SUSY. Models with top squark masses less than 700 (930) GeV are excluded at 95% confidence level for RPV (stealth) SUSY scenarios.

32 data tables

Cutflows and signal efficiencies for the RPV SUSY model in the $0\ell$ channel corresponding to two values of $m_{\tilde{t}}$.

Cutflows and signal efficiencies for the Stealth SYY SUSY model in the $0\ell$ channel corresponding to two values of $m_{\tilde{t}}$.

Cutflows and signal efficiencies for the RPV SUSY model in the $1\ell$ channel corresponding to two values of $m_{\tilde{t}}$.

More…

Search for the rare decay D$^0$ $\to$ $\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
Phys.Rev.Lett. 135 (2025) 151803, 2025.
Inspire Record 2931458 DOI 10.17182/hepdata.158634

A search for the rare decay D$^0$$\to$$μ^+μ^-$ is reported using proton-proton collision events at $\sqrt{s}$ = 13.6 TeV collected by the CMS detector in 2022$-$2023, corresponding to an integrated luminosity of 64.5 fb$^{-1}$. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D$^0$ mesons obtained from D$^{*+}$$\to$ D$^0π^+$ decays. No significant excess is observed. A limit on the branching fraction of $\mathcal{B}$(D$^0$$\to$$μ^+μ^-$) $\lt$ 2.4 $\times$ 10$^{-9}$ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.

7 data tables

Summary of branching fraction.

Summary of systematic uncertainties for the D->mumu branching fraction measurement with their corresponding contributions in the signal channel.

The distributions of the dipion invariant mass $m_{\pi\pi}$ for the normalization channel in data.

More…

Search for dark matter produced in association with a Higgs boson decaying to a $\tau$ lepton pair in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-SUS-23-012, 2025.
Inspire Record 2930174 DOI 10.17182/hepdata.158037

A search for dark matter particles produced in association with a Higgs boson decaying into a pair of $\tau$ leptons is performed using data collected in proton-proton collisions at a center-of-mass energy of 13 TeV with the CMS detector. The analysis is based on a data set corresponding to an integrated luminosity of 101 fb$^{-1}$ collected in 2017$-$2018. No significant excess over the expected standard model background is observed. This result is interpreted within the frameworks of the 2HDM+a and baryonic Z$'$ benchmark simplified models. The 2HDM+a model is a type-II two-Higgs-doublet model featuring a heavy pseudoscalar with an additional light pseudoscalar. Upper limits at 95% confidence level are set on the product of the production cross section and the branching fraction for each of these two simplified models. Heavy pseudoscalar boson masses between 400 and 700 GeV are excluded for a light pseudoscalar mass of 100 GeV. For the baryonic Z$'$ model, a statistical combination is made with an earlier search based on a data set of 36 fb$^{-1}$ collected in 2016. In this model, Z$'$ boson masses up to 1050 GeV are excluded for a dark matter particle mass of 1 GeV.

13 data tables

Distributions of the total transverse mass $M_{T}^{tot}$ in the SRs, comparing observed data with the SM prediction in the $e\tau_{h}$ final states in 2017 (upper left) after the simultaneous maximum likelihood fit. Representative signal distributions are shown for the 2HDM+a (dashed red curve) and baryonic Z' (dashed black curve) models. The data points are shown with their statistical uncertainties, and the last bin includes overflow. The ``Other MC'' background contribution includes events from ggh, VBF, Wh, Zh, and electroweak vector boson production. The uncertainty band accounts for all systematic and statistical sources of uncertainty, after the fit to the data.

Distributions of the total transverse mass $M_{T}^{tot}$ in the SRs, comparing observed data with the SM prediction in the $e\tau_{h}$ final states in 2018 (upper right) after the simultaneous maximum likelihood fit. Representative signal distributions are shown for the 2HDM+a (dashed red curve) and baryonic Z' (dashed black curve) models. The data points are shown with their statistical uncertainties, and the last bin includes overflow. The ``Other MC'' background contribution includes events from ggh, VBF, Wh, Zh, and electroweak vector boson production. The uncertainty band accounts for all systematic and statistical sources of uncertainty, after the fit to the data.

Distributions of the total transverse mass $M_{T}^{tot}$ in the SRs, comparing observed data with the SM prediction in the $\mu\tau_{h}$ final states in 2017 (center left) after the simultaneous maximum likelihood fit. Representative signal distributions are shown for the 2HDM+a (dashed red curve) and baryonic Z' (dashed black curve) models. The data points are shown with their statistical uncertainties, and the last bin includes overflow. The ``Other MC'' background contribution includes events from ggh, VBF, Wh, Zh, and electroweak vector boson production. The uncertainty band accounts for all systematic and statistical sources of uncertainty, after the fit to the data.

More…