Showing 6 of 6 results
A search for beyond the standard model spin-0 bosons, $\phi$, that decay into pairs of electrons, muons, or tau leptons is presented. The search targets the associated production of such bosons with a W or Z gauge boson, or a top quark-antiquark pair, and uses events with three or four charged leptons, including hadronically decaying tau leptons. The proton-proton collision data set used in the analysis was collected at the LHC from 2016 to 2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The observations are consistent with the predictions from standard model processes. Upper limits are placed on the product of cross sections and branching fractions of such new particles over the mass range of 15 to 350 GeV with scalar, pseudoscalar, or Higgs-boson-like couplings, as well as on the product of coupling parameters and branching fractions. Several model-dependent exclusion limits are also presented. For a Higgs-boson-like $\phi$ model, limits are set on the mixing angle of the Higgs boson with the $\phi$ boson. For the associated production of a $\phi$ boson with a top quark-antiquark pair, limits are set on the coupling to top quarks. Finally, limits are set for the first time on a fermiophilic dilaton-like model with scalar couplings and a fermiophilic axion-like model with pseudoscalar couplings.
Binned representation of the control and signal regions for the combined multilepton event selection and the combined 2016–2018 data set. The control region bins follow their definitions as given in Table 1 of the paper, and the signal region bins correspond to the channels as defined by the lepton flavor composition. The normalizations of the background samples in the control regions are described in Sections 5.1 and 5.2 of the paper. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$, and those satisfying any of the control region requirements are removed from the signal region bins. All subsequent selections given in Tables 2 and 3 of the paper are based on events given in the signal region bins. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
The $M_{OSSF}$ spectrum for the combined 2L1T, 2L2T, 3L, 3L1T, and 4L event selection (excluding the $\mathrm{Z\gamma}$ control region) and the combined 2016-2018 data set. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $Z\phi($ee$)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $Z\phi($ee$)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $Z\phi(\mu\mu)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $Z\phi(\mu\mu)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR4 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR5 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR6 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR7 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on $g^2_{tS}$ for the dilaton-like $t\bar{t} \phi$ signal model. Masses of the $\phi$ boson above 300 GeV are not probed for the dilaton-like signal model as the $\phi$ branching fraction into top quark-antiquark pairs becomes nonnegligible.
The 95% confidence level upper limits on $g^2_{tPS}$ for the axion-like $t\bar{t} \phi$ signal model. Masses of the $\phi$ boson above 300 GeV are not probed for the axion-like signal model as the $\phi$ branching fraction into top quark-antiquark pairs becomes nonnegligible.
The 95% confidence level upper limits on the product of $sin^2 \theta$ and branching fraction for the H-like production of X$\phi \rightarrow$ ee. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level upper limits on the product of $sin^2 \theta$ and branching fraction for the H-like production of X$\phi \rightarrow \mu\mu$. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level upper limits on $sin^2 \theta$ for the H-like production and decay of X$\phi$ signal model.
Cross section in units of pb for the W$\phi$, Z$\phi$, and $t\bar{t}\phi$ signals as a function of the $\phi$ boson mass in GeV. All cross sections are inclusive of all W, Z, $t\bar{t}$ and $\phi$ decay modes.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level observed upper limits on the product of $\sigma$($t \bar{t} \phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $t \bar{t} \phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($t \bar{t} \phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $t \bar{t} \phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with H-like production, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with H-like production, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Selected signal shapes of the $W\phi$(ee) signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$(ee) signal are provided in the SignalShapes_XPhiToEleEle.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$$(\mu\mu)$ signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$$(\mu\mu)$ signal are provided in the SignalShapes_XPhiToMuMu.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$$(\tau\tau)$ signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$$(\tau\tau)$ signal are provided in the SignalShapes_XPhiToTauTau.root file, and a README file with instructions is provided under Additional Resources.
A search is presented for charged, long-lived supersymmetric particles in final states with one or more disappearing tracks. The search is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the CERN LHC between 2016 and 2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. The search is performed over final states characterized by varying numbers of jets, b-tagged jets, electrons, and muons. The length of signal-candidate tracks in the plane perpendicular to the beam axis is used to characterize the lifetimes of wino- and higgsino-like charginos produced in the context of the minimal supersymmetric standard model. The d$E$/d$x$ energy loss of signal-candidate tracks is used to increase the sensitivity to charginos with a large mass and thus a small Lorentz boost. The observed results are found to be statistically consistent with the background-only hypothesis. Limits on the pair production cross section of gluinos and squarks are presented in the framework of simplified models of supersymmetric particle production and decay, and for electroweakino production based on models of wino and higgsino dark matter. The limits presented are the most stringent to date for scenarios with light third-generation squarks and a wino- or higgsino-like dark matter candidate capable of explaining the known dark matter relic density.
Comparison between the data and SM background predictions for the number of b-tagged jets in the long track final state.
Comparison between the data and SM background predictions for the number of jets in the long track final state.
Comparison between the data and SM background predictions for the hard missing transverse momentum in the long track final state.
Comparison between the data and SM background predictions for the number of muons in the long track final state.
Comparison between the data and SM background predictions for the m_{DTk; stopping power} in the long track final state.
Comparison between the data and SM background predictions for the number of electrons in the long track final state.
Comparison between the data and SM background predictions for the number of b-tagged jets in the short track final state.
Comparison between the data and SM background predictions for the number of jets in the short track final state.
Comparison between the data and SM background predictions for the hard missing transverse momentum in the short track final state.
Comparison between the data and SM background predictions for the number of muons in the short track final state.
Comparison between the data and SM background predictions for the m_{DTk; stopping power} in the short track final state.
Comparison between the data and SM background predictions for the number of electrons in the short track final state.
Comparison between the data and post-fit SM background predictions for the 49 search regions in the global search region.
Expected 95% CL upper limit on the cross section in pb for the T6bt 10 cm model.
Observed cross 95% CL upper limit on the cross section in pb for the T6bt 10 cm model.
Limit in the mass plane of the T6bt 10 cm model
Expected 95% CL upper limit on the cross section in pb for the T6bt 200 cm model.
Observed cross 95% CL upper limit on the cross section in pb for the T6bt 200 cm model.
Limit in the mass plane of the T6bt 200 cm model
Expected 95% CL upper limit on the cross section in pb for the T6tb 10 cm model.
Observed cross 95% CL upper limit on the cross section in pb for the T6tb 10 cm model.
Limit in the mass plane of the T6tb 10 cm model
Expected 95% CL upper limit on the cross section in pb for the T6tb 200 cm model.
Observed cross 95% CL upper limit on the cross section in pb for the T6tb 200 cm model.
Limit in the mass plane of the T6tb 200 cm model
Expected 95% CL upper limit on the cross section in pb for the T5btbt 10 cm model.
Observed cross 95% CL upper limit on the cross section in pb for the T5btbt 10 cm model.
Limit in the mass plane of the T5btbt 10 cm model
Expected 95% CL upper limit on the cross section in pb for the T5btbt 200 cm model.
Observed cross 95% CL upper limit on the cross section in pb for the T5btbt 200 cm model.
Limit in the mass plane of the T5btbt 200 cm model
Expected 95% CL upper limit on the cross section in pb for the pure Wino model.
Observed cross 95% CL upper limit on the cross section in pb for the pure Wino model.
Limit in the mass plane of the pure Wino model
Expected 95% CL upper limit on the cross section in pb for the pure Higgsino model.
Observed cross 95% CL upper limit on the cross section in pb for the pure Higgsino model.
Limit in the mass plane of the pure Higgsino model
Cut flow table showing object-level efficiency at each stage of the track selection. The denominator of the efficiency is the number of chargino-matched tracks that have been reconstructed and satisfy the pT requirements, for which the chargino decays within the pixel detector volume; the numerator is the number of such tracks which also satisfy all requirements up to and including the associated criterion.
Cut flow table showing object-level efficiency at each stage of the track selection. The denominator of the efficiency is the number of chargino-matched tracks that have been reconstructed and satisfy the pT requirements, for which the chargino decays within the strip detector volume; the numerator is the number of such tracks which also satisfy all requirements up to and including the associated criterion.
Percent efficiencies for sum of all SR bins, each SR bin, SR bin groups:
Percent efficiencies for sum of all SR bins, each SR bin, SR bin groups:pp -> chi1p-chi1m / chi10-chi1pmHiggsino model: ctau calculated as eq. 12 in arXiv:1703.09675.Individual events weighted according to the resulting decay lengths.
Percent efficiencies for sum of all SR bins, each SR bin, SR bin groups:
Percent efficiencies for sum of all SR bins, each SR bin, SR bin groups:
Percent efficiencies for sum of all SR bins, each SR bin, SR bin groups:pp -> chi1p-chi1m / chi10-chi1pmPure Wino model: ctau calculated as eq. 61 in arXiv:1410.4549.Individual events weighted according to the resulting decay lengths.
Percent efficiencies for sum of all SR bins, each SR bin, SR bin groups:
Percent efficiencies for sum of all SR bins, each SR bin, SR bin groups:pp -> chi20-chi1pm / chi1p-chi1m / chi10-chi1pm; dm(chi20 - chi10) = 2dm(chi1pm - chi10)Higgsino model: ctau calculated as eq. 12 in arXiv:1703.09675.Individual events weighted according to the resulting decay lengths.
Percent efficiencies for sum of all SR bins, each SR bin, SR bin groups:
Percent efficiencies for sum of all SR bins, each SR bin, SR bin groups:pp -> chi20-chi1pm / chi1p-chi1m / chi10-chi1pm; dm(chi20 - chi10) = 2dm(chi1pm - chi10)Pure Higgsino model: ctau calculated as eq. 12 in arXiv:1703.09675.Individual events weighted according to the resulting decay lengths.
Percent efficiencies for sum of all SR bins, each SR bin, SR bin groups:
Efficiency as a function of transverse (x-y) decay length of the chargino for short track selection in Run 2.
Efficiency as a function of transverse (x-y) decay length of the chargino for long track selection in Run 2.
Efficiency as a function of transverse (x-y) decay length of the chargino for combined track selection in Run 2.
Cut flow for model T2tb (m(~b)=1 TeV, m(~chi10)=900 GeV, c#tau=10 cm), showing events passing each cut stage.
Cut flow for model T1btbt (m(~g)=1.5 TeV, m(~chi10)=1.1 TeV, c#tau=200 cm), showing events passing each cut stage.
Cut flow for model T2tb (m(~b)=1 TeV, m(~chi10)=900 GeV, c#tau=200 cm), showing events passing each cut stage.
Cut flow for model T2tb (m(~b)=1 TeV, m(~chi10)=900 GeV, c#tau=200 cm), showing events passing each cut stage.
Cut flow for model T1btbt (m(~g)=1.5 TeV, m(~chi10)=1.1 TeV, c#tau=200 cm), showing events passing each cut stage.
Cut flow for model T1btbt (m(~g)=1.5 TeV, m(~chi10)=1.1 TeV, c#tau=10 cm), showing events passing each cut stage.
Cut flow for model T2tb (m(~b)=1 TeV, m(~chi10)=900 GeV, c#tau=10 cm), showing events passing each cut stage.
Cut flow for model T1btbt (m(~g)=1.5 TeV, m(~chi10)=1.1 TeV, c#tau=10 cm), showing events passing each cut stage.
A search for supersymmetry is presented in events with a single charged lepton, electron or muon, and multiple hadronic jets. The data correspond to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC. The search targets gluino pair production, where the gluinos decay into final states with the lightest supersymmetric particle (LSP) and either a top quark-antiquark ($\mathrm{t\bar{t}}$) pair, or a light-flavor quark-antiquark ($\mathrm{q\bar{q}}$) pair and a virtual or on-shell W boson. The main backgrounds, $\mathrm{t\bar{t}}$ pair and W+jets production, are suppressed by requirements on the azimuthal angle between the momenta of the lepton and of its reconstructed parent W boson candidate, and by top quark and W boson identification based on a machine-learning technique. The number of observed events is consistent with the expectations from standard model processes. Limits are evaluated on supersymmetric particle masses in the context of two simplified models of gluino pair production. Exclusions for gluino masses reach up to 2120 (2050) GeV at 95% confidence level for a model with gluino decay to a $\mathrm{t\bar{t}}$ pair (a $\mathrm{q\bar{q}}$ pair and a W boson) and the LSP. For the same models, limits on the mass of the LSP reach up to 1250 (1070) GeV.
Signal and background distributions of the $\Delta \phi$ variable, as predicted by simulation, for the multi-b analysis, requiring $n_{\textrm{jet}}\geq6$, $L_T>250~\mathrm{GeV}$, $H_T>500~\mathrm{GeV}$. The predicted signal distributions are also shown for two representative combinations of (gluino, neutralino) masses with large (2.2, 0.1) $\mathrm{TeV}$ and small (1.8, 1.3) $\mathrm{TeV}$ mass differences.
Signal and background distributions of the $\Delta \phi$ variable, as predicted by simulation, for the zero-b analysis, requiring $n_{\textrm{jet}}\geq6$, $L_T>350~\mathrm{GeV}$, $H_T>750~\mathrm{GeV}$. The predicted signal distributions are also shown for two representative combinations of (gluino, neutralino) masses with large (2.2, 0.1) $\mathrm{TeV}$ and small (1.8, 1.3) $\mathrm{TeV}$ mass differences.
Distributions of $\Delta\phi$ as obtained from simulation, requiring various $\textrm{t}$ tag multiplicities for the total background.
Distributions of $\Delta\phi$ as obtained from simulation, requiring various $\textrm{t}$ tag multiplicities for the signal in two representative combinations of (gluino, neutralino) masses with large (2.2, 0.1)$\mathrm{TeV}$ and small (1.8, 1.3)$\mathrm{TeV}$ mass difference.
Results of fits to the $n_{\textrm{b}}$ multiplicity for control regions for the muon channel and with the requirements $3\leq n_{\textrm{jet}}\leq4$, $250<L_T<350~\mathrm{GeV}$, $500<H_T<750~\mathrm{GeV}$, $n_{\textrm{W}}\geq1$, $\Delta \phi<1$. The shaded area shows the fit uncertainty of the total background.
Results of fits to the $n_{\textrm{b}}$ multiplicity for control regions for the muon channel and with the requirements $3\leq n_{\textrm{jet}}\leq4$, $350<L_T<450~\mathrm{GeV}$, $H_T>1000~\mathrm{GeV}$, $n_{\textrm{W}}\geq0$, $\Delta \phi<1$. The shaded area shows the fit uncertainty of the total background.
Jet multiplicity distribution after the single-lepton baseline selection excluding the SRs for the multi-b analysis. The simulation is normalized to data with the SF mentioned in the plot.
Jet multiplicity distribution after the single-lepton baseline selection excluding the SRs for the the zero-b analysis (right). The simulation is normalized to data with the SF mentioned in the plot.
Jet multiplicity distribution in the dilepton CRs for the multi-b analysis. The simulation is normalized to data with the SF mentioned in the plot.
Jet multiplicity distribution in the dilepton CRs for the zero-b analysis. The simulation is normalized to data with the SF mentioned in the plot.
The double ratio of the single-lepton and dilepton ratio between data and simulation together with fit results and their uncertainties is shown for the multi-b analysis. The fits are performed for each data-taking year; 2018 is shown as an example.
The double ratio of the single-lepton and dilepton ratio between data and simulation together with fit results and their uncertainties is shown for the zero-b analysis. The fits are performed for each data-taking year; 2018 is shown as an example.
The prefit $L_{\mathrm{P}}$ distribution for selected electron candidates in the baseline QCD selection, with modified requirements of $n_{\text{jet}}\in[3,4]$ and $n_{\mathrm{b}}=0$.
The prefit $L_{\mathrm{P}}$ distribution for anti-selected electron candidates in the baseline QCD selection, with modified requirements of $n_{\text{jet}}\in[3,4]$ and $n_{\mathrm{b}}=0$.
Observed event yields in the MB SRs of the multi-b analysis compared to signal and background predictions. The relative fraction of the different SM EW background contributions determined in simulation is shown by the stacked, colored histograms, normalized so that their sum is equal to the background estimated using data control regions. The QCD background is predicted using the $L_p$ method. The signal is shown for two representative combinations of (gluino, neutralino) masses with large (2.2, 0.1) $\mathrm{TeV}$ and small (1.8, 1.3) $\mathrm{TeV}$ mass differences.
Observed event yields in the MB SRs of the zero-b analysis compared to signal and background predictions. The $\textrm{W}$+jets, $\textrm{t}\bar{\textrm{t}}$+jets, and QCD predictions are extracted from data control samples, while the other background contributions are estimated from simulation. The signal is shown for two representative combinations of (gluino, neutralino) masses with large (2.2, 0.1) $\mathrm{TeV}$ and small (1.8, 1.3) $\mathrm{TeV}$ mass differences.
Cross section limits at 95% CL for the T1tttt (left) model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the observed (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T1tttt model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the observed (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T1tttt model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the observed (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T1tttt model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the observed (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T1tttt model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the experved (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T1tttt model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the experved (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T1tttt model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the experved (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T5qqqqWW model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the observed (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T5qqqqWW model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the observed (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T5qqqqWW model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the observed (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T5qqqqWW model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the observed (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T5qqqqWW model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the experved (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T5qqqqWW model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the experved (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Cross section limits at 95% CL for the T5qqqqWW model, as functions of the gluino and LSP masses, assuming a branching fraction of 100%. The mass of the intermediate chargino is taken to be halfway between the gluino and the neutralino masses. The solid black (dashed red) lines correspond to the experved (expected) mass limits, with the thicker lines representing the central values and the thinner lines representing the $\pm1\sigma$ uncertainty bands related to the theoretical (experimental) uncertainties.
Observed number of events in the MB SR bins of the multi-b analysis. All bins are defined with $\Delta\phi > 0.75$.
Observed number of events in the MB SR bins of the zero-b analysis.
The simplified likelihood can be constructed using this covariance matrix of nuisance parameters in the signal region (MB SR). The bin contents have been aggregated accross the three years to simplify the likelihood.
Selection efficiency for the multi-b signal for the SRs.
The simplified likelihood can be constructed using this covariance matrix of nuisance parameters in the signal region (MB SR). The bins were aggregated across HT to stabilize the simplified likelihood.
Selection efficiency for the zero-b signal for the SRs. The bins correspond to the aggregated bins that were used for the covariance matrix.
A search for supersymmetry involving the pair production of gluinos decaying via off-shell third-generation squarks into the lightest neutralino ($\tilde\chi^0_1$) is reported. It exploits LHC proton$-$proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 139 fb$^{-1}$ collected with the ATLAS detector from 2015 to 2018. The search uses events containing large missing transverse momentum, up to one electron or muon, and several energetic jets, at least three of which must be identified as containing $b$-hadrons. Both a simple kinematic event selection and an event selection based upon a deep neural-network are used. No significant excess above the predicted background is found. In simplified models involving the pair production of gluinos that decay via off-shell top (bottom) squarks, gluino masses less than 2.44 TeV (2.35 TeV) are excluded at 95% CL for a massless $\tilde\chi^0_1$. Limits are also set on the gluino mass in models with variable branching ratios for gluino decays to $b\bar{b}\tilde\chi^0_1$, $t\bar{t}\tilde\chi^0_1$ and $t\bar{b}\tilde\chi^-_1$ / $\bar{t}b\tilde\chi^+_1$.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-M1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-M2. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-0L-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-M1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-M2. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1L-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-M. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-M. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtb-C. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-2100-1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1800-1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-2300-1200. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gtt-1900-1400. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2800-1400. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2300-1000. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2100-1600. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
A summary of the uncertainties in the background estimates for SR-Gbb-2000-1800. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.
Results of the background-only fit extrapolated to SR_Gtt_0L_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_M1 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_M2 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_0L_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_M1 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_M2 in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1L_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_M in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_B in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_M in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtb_C in the CC analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_2100_1 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1800_1 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_2300_1200 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gtt_1900_1400 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2800_1400 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2300_1000 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2100_1600 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Results of the background-only fit extrapolated to SR_Gbb_2000_1800 in the NN analysis, for both the total expected background yields and the main contributing background processes. The quoted uncertainties include both experimental and theoretical systematics. The data in the SRs are not included in the fit. The background category $t\bar{t}+X$ includes $t\bar{t} W/Z$, $t\bar{t} H$ and $t\bar{t} t\bar{t}$ events. The row ``Pre-fit background'' provides the total background prediction when the $t\bar{t}$ and $Z+$jets normalisations are obtained from theoretical calculation, taking into account the kinematic weights described in Section 5.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the NN analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~GeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~GeV, obtained from the CC analysis.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 600$~GeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 600$~GeV, obtained from the CC analysis.
Observed (left) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~TeV, obtained from the CC analysis.
Expected (right) 95\%~CL exclusion limits on the gluino mass as a function of BR$(\tilde{g} \to b\bar{b}\tilde\chi^{0}_{1}$) (vertical) and BR$(\tilde{g} \to t\bar{t}\tilde\chi^{0}_{1}$) (horizontal) for Gtb models with $m(\tilde\chi^{0}_{1}) = 1$~TeV, obtained from the CC analysis.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Observed exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Expected exclusion limit in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb models obtained from the CC analysis. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm 1 \sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb (right) models obtained from the CC analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gbb (right) models obtained from the NN analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt (left) models obtained from the CC analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Upper limit at 95\% CL on the cross-section times branching ratio (fb) in the $\tilde{g}$--$\tilde\chi^0_1$ mass plane for the Gtt (left) models obtained from the NN analysis. The numbers give the observed 95\% CL upper limit on the cross section in fb, with the label colour matching the associated best-expected region. Only a lower limit on the excluded cross section (>0.7 fb) is given at some points due to the very small number events expected and observed in the chosen SR. The dashed and solid bold lines show the 95\% CL expected and observed limits, respectively. The shaded bands around the expected limits show the impact of the experimental and background theoretical uncertainties. The dotted lines show the impact on the observed limit of the variation of the nominal signal cross-section by $\pm1\sigma$ of its theoretical uncertainty.
Acceptance for SR-Gtt-0L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-0L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-0L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-B and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-M1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-M2 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1L-C and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-B and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-B and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-M and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-M and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-C and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-C and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-2100-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-2100-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1800-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1800-1 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-2300-1200 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-2300-1200 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gtt-1900-1400 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gtt-1900-1400 and the $\tilde{g}\rightarrow t\bar{t}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2800-1400 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2800-1400 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2300-1000 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2300-1000 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2100-1600 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2100-1600 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Acceptance for SR-Gbb-2000-1800 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Efficiency for SR-Gbb-2000-1800 and the $\tilde{g}\rightarrow b\bar{b}\tilde\chi^0_1$ signal process.
Cutflow for the SR-Gtt-0L-B for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-M1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-M2 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-0L-C for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-B for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-M1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-M2 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1L-C for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-B for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-M for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-C for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-B for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-M for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtb-C for a representative Gtb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-2100-1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1800-1 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-2300-1200 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gtt-1900-1400 for a representative Gtt signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2800-1400 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2300-1000 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2100-1600 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
Cutflow for the SR-Gbb-2000-1800 for a representative Gbb signal. Signal was generated with 30000 events. Expected yields are normalised to a luminosity of 139~fb$^{-1}$.
A novel search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the LHC. Events consistent with the production of a Higgs boson in association with a leptonically decaying $Z$ boson are analysed. Long-lived particle (LLP) decays are reconstructed from inner-detector tracks as displaced vertices with high mass and track multiplicity relative to Standard Model processes. The analysis selection requires the presence of at least two displaced vertices, effectively suppressing Standard Model backgrounds. The residual background contribution is estimated using a data-driven technique. No excess over Standard Model predictions is observed, and upper limits are set on the branching ratio of the Higgs boson to LLPs. Branching ratios above 10% are excluded at 95% confidence level for LLP mean proper lifetimes $c\tau$ as small as 4 mm and as large as 100 mm. For LLP masses below 40 GeV, these results represent the most stringent constraint in this lifetime regime.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 16$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 25$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 35$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 45$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 55$ GeV.
The fraction of $a$ boson decays matched to reconstructed displaced vertices passing all vertex selections in signal MC.
The extrapolated signal selection efficiency as a function of $c\tau_{a}$.
This paper presents a search for dark matter in the context of a two-Higgs-doublet model together with an additional pseudoscalar mediator, $a$, which decays into the dark-matter particles. Processes where the pseudoscalar mediator is produced in association with a single top quark in the 2HDM+$a$ model are explored for the first time at the LHC. Several final states which include either one or two charged leptons (electrons or muons) and a significant amount of missing transverse momentum are considered. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s} = 13$ TeV during LHC Run2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess above the Standard Model predictions is found. The results are expressed as 95% confidence-level limits on the parameters of the signal models considered.
Efficiencies of the DMt samples in the tW1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Acceptances on TRUTH level of the DMt samples in the tW1L channel for all bins in the SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Efficiencies of the DMt samples in the tW1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Acceptances on TRUTH level of the DMt samples in the tW1L channel for all bins in the SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Efficiencies of the DMt samples in the tW2L SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Acceptances on TRUTH level of the DMt samples in the tW2L SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Efficiencies of the DMt samples in the tW2L SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Acceptances on TRUTH level of the DMt samples in the tW2L SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Efficiencies of the DMt samples in the tj1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The map includes all used samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Acceptances on TRUTH level of the DMt samples in the tj1L channel for all bins in the SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The map includes all used samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW1L analysis considering only DMt signal.
Upper limits on excluded cross sections of the tW1L analysis considering only the DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the tW1L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the tW1L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW1L analysis considering only DMt signal.
Upper limits on excluded cross sections of the tW1L analysis considering only the DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the tW1L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the tW1L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW2L analysis considering only DMt signal.
Upper limits on excluded cross sections of the tW2L analysis considering only the DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the tW2L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW2L analysis considering only DMt signal.
Upper limits on excluded cross sections of the tW2L analysis considering only the DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the tW2L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the combined tW1L and tW2L analyses considering only the DMt signal.
Upper limits on excluded cross sections of the combined tW1L and tW2L analyses considering only the DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the statistical combination of the tW1L and tW2L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming only $tW$+DM contributions, for the statistical combination of the tW1L and tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the combined tW1L and tW2L analyses considering only the DMt signal.
Upper limits on excluded cross sections of the combined tW1L and tW2L analyses considering only the DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the statistical combination of the tW1L and tW2L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming only $tW$+DM contributions, for the statistical combination of the tW1L and tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW1L analysis considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW1L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW1L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW1L analysis considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW1L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW1L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW2L analysis considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW2L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tW2L analysis considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW2L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the combined tW1L and tW2L analyses considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the statistical combination of the tW1L and tW2L analysis channel.
The observed exclusion contours as a function of $(m_a, m_{H^{\pm}})$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the statistical combination of the tW1L and tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the combined tW1L and tW2L analyses considering the DMt$\bar{t}$+DMt signal.
The expected exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the statistical combination of the tW1L and tW2L analysis channel.
The observed exclusion contours as a function of $(m_{H^{\pm}}, \tan\beta)$, assuming DM$t\bar{t}$ and DM$t$ contributions, for the statistical combination of the tW1L and tW2L analysis channel.
Upper limits on signal strength (excluded cross section over theoretical cross section) of the tj1L analysis considering only the DMt signal.
Upper limits on upper limits on excluded cross sections of the tj1L analysis considering only the DMt signal.
The expected and observed cross section exclusion limits as a function of $m_{H^{\pm}}$ in the tj1L analysis channel for signal models with $m_a = 250~GeV$, and $\tan\beta=0.3$. The $\sigma^{}_\mathrm{BSM}$ is the cross section of the $t$-channel DM production process.
The expected and observed cross section exclusion limits as a function of $m_{H^{\pm}}$ in the tj1L analysis channel for signal models with $m_a = 250~GeV$, and $\tan\beta=0.5$. The $\sigma^{}_\mathrm{BSM}$ is the cross section of the $t$-channel DM production process.
Cross sections of the DMt samples in the tW1L channel. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Cross sections of the DMt samples in the tW1L channel. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Cross sections times branching ratio of the DMt samples in the tW2L channel. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
Cross sections times branching ratio of the DMt samples in the tW2L channel. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Cross sections of the DMt samples in the tj1L channel. The map includes all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
MC generator filter efficiencies of the DMt samples in the tW1L channel. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
MC generator filter efficiencies of the DMt samples in the tW1L channel. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
MC generator filter efficiencies of the DMt samples in the tW2L channel. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.
MC generator filter efficiencies of the DMt samples in the tW2L channel. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
MC generator filter efficiencies of the DMt samples in the tj1L channel. The map includes all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.
Background-only fit results for the tW1L and tW2L signal regions. The backgrounds which contribute only a small amount (rare processes such as triboson, Higgs boson production processes, $t\bar{t}t\bar{t}$, $t\bar{t}WW$ and non-prompt or misidentified leptons background) are grouped and labelled as ``Others´´. The quoted uncertainties on the fitted SM background include both the statistical and systematic uncertainties.
Background-only fit results for the tj1L signal regions. The backgrounds which contribute only a small amount ($Z$+jets, rare processes such as $tWZ$, triboson, Higgs boson production processes, ,$t\bar{t}t\bar{t}$, $t\bar{t}WW$) are grouped and labelled as ``Others´´. The quoted uncertainties on the fitted SM background include both the statistical and systematic uncertainties.
Cutflow of the weighted events with statistical uncertainties for two DMt samples in all bins of the tW1L channel. The PreSelection includes at least 1 lepton in the event, at least 1 $b$-jet with $p_{\mathrm{T}} > 50~GeV$, $m\mathrm{_{T}^{lep}} > 30~GeV$, $\Delta\phi\mathrm{_{4jets, MET}^{min}} > 0.5$ and $E\mathrm{_{T}^{miss}} > 200~GeV$.
Cutflow of the weighted events with statistical uncertainties for two DMt samples in the tW2L channel. The PreSelection includes at least 2 leptons in the event, at least 1 $b$-jet with $p_{\mathrm{T}} > 40~GeV$, $m_{ll} > 40~GeV$, $m\mathrm{_{T2}} > 40~GeV$, $\Delta\phi\mathrm{_{4jets, MET}^{min}} > 0.5$ and $E\mathrm{_{T}^{miss}} > 200~GeV$.
Cutflow of the weighted events with the statistical uncertainties (except for the first cuts) for two DMt samples in all bins off the tj1L channel. The PreSelection includes at least 1 lepton in the event, at least 1 $b$-jet with $p_{\mathrm{T}} > 50~GeV$, $m\mathrm{_{T}^{lep}} > 30~GeV$, $\Delta\phi\mathrm{_{4jets, MET}^{min}} > 0.5$ and $E\mathrm{_{T}^{miss}} > 200~GeV$.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.