Date

Underlying Event measurements in pp collisions at sqrt(s) = 0.9 and 7 TeV with the ALICE experiment at the LHC

The ALICE collaboration Abelev, Betty ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
JHEP 07 (2012) 116, 2012.
Inspire Record 1080735 DOI 10.17182/hepdata.58863

We present measurements of Underlying Event observables in pp collisions at $\sqrt{s}$ = 0.9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum $p_{\rm T, LT}$ in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different $p_{\rm T}$ thresholds: 0.15, 0.5 and 1.0 GeV/$c$. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track $p){\rm T}$ threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed $p_{\rm T}$ in the Transverse region by about 10-30%.

0 data tables match query

Measurement of the nuclear modification factor and prompt charged particle production in $p\mathrm{Pb}$ and $pp$ collisions at $\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Phys.Rev.Lett. 128 (2022) 142004, 2022.
Inspire Record 1913240 DOI 10.17182/hepdata.131597

The production of prompt charged particles in proton-lead collisions and in proton-proton collisions at the nucleon-nucleon centre-of-mass energy ${\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}}$ is studied at LHCb as a function of pseudorapidity ($\eta$) and transverse momentum ($p_{\mathrm{T}}$) with respect to the proton beam direction. The nuclear modification factor for charged particles is determined as a function of $\eta$ between ${-4.8<\eta<-2.5}$ (backward region) and ${2.0<\eta<4.8}$ (forward region), and $p_{\mathrm{T}}$ between ${0.2

0 data tables match query

Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Aamodt, Kenneth ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 106 (2011) 032301, 2011.
Inspire Record 880049 DOI 10.17182/hepdata.57047

The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.

0 data tables match query

Angular analysis of the $B^{+}\rightarrow K^{\ast+}\mu^{+}\mu^{-}$ decay

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Phys.Rev.Lett. 126 (2021) 161802, 2021.
Inspire Record 1838196 DOI 10.17182/hepdata.105273

We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.

0 data tables match query

Study of $\Upsilon$ production in $p$Pb collisions at $\sqrt{s_{NN}}=8.16$ TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 11 (2018) 194, 2018.
Inspire Record 1699106 DOI 10.17182/hepdata.93070

The production of $\Upsilon (nS)$ mesons ($n=1,2,3$) in $p$Pb and Pb$p$ collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{NN}}=8.16$ TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of 31.8 nb$^{-1}$. The $\Upsilon (nS)$ mesons are reconstructed through their decays into two opposite-sign muons. The measurements comprise the differential production cross-sections of the $\Upsilon (1S)$ and $\Upsilon (2S)$ states, their forward-to-backward ratios and nuclear modification factors, performed as a function of the transverse momentum $p_{\mathrm{T}}$ and rapidity in the nucleon-nucleon centre-of-mass frame $y^*$ of the $\Upsilon (nS)$ states, in the kinematic range $p_{\rm{T}}<25$ GeV/$c$ and $1.5

0 data tables match query

Measurement of the $\eta_c(1S)$ production cross-section in $pp$ collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Eur.Phys.J.C 80 (2020) 191, 2020.
Inspire Record 1763898 DOI 10.17182/hepdata.90457

Using a data sample corresponding to an integrated luminosity of $2.0\,fb^{-1}$, collected by the LHCb experiment, the production of the $\eta_c(1S)$ state in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13 \text{ TeV}$ is studied in the rapidity range ${2.0 < y < 4.5}$ and in the transverse momentum range ${6.5 < p_{T} < 14.0\text{ GeV}}$. The cross-section for prompt production of $\eta_c(1S)$ mesons relative to that of the $J/\psi$ meson is measured using the ${p\bar{p}}$ decay mode and is found to be ${\sigma_{\eta_c(1S)}/\sigma_{J/\psi} = 1.69 \pm 0.15 \pm 0.10 \pm 0.18}$. The quoted uncertainties are, in order, statistical, systematic and due to uncertainties on the branching fractions of the ${J/\psi\to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The prompt $\eta_c(1S)$ production cross-section is determined to be ${\sigma_{\eta_c(1S)} = 1.26 \pm 0.11\pm 0.08 \pm 0.14 \,\mu b}$, where the last uncertainty includes that on the ${J/\psi}$ meson cross-section. The ratio of the branching fractions of $b$-hadron decays to the $\eta_c(1S)$ and ${J/\psi}$ states is measured to be ${\mathcal{B}_{b\to\eta_c X}/\mathcal{B}_{b\to J/\psi X} = 0.48 \pm 0.03 \pm 0.03 \pm 0.05}$, where the last uncertainty is due to those on the branching fractions of the ${J/\psi \to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The difference between the ${J/\psi}$ and $\eta_c(1S)$ masses is also determined to be ${113.0 \pm 0.7 \pm 0.1\text{ MeV}}$, which is the most precise single measurement of this quantity to date.

0 data tables match query

Azimuthal correlations within exclusive dijets with large momentum transfer in photon-lead collisions

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Phys.Rev.Lett. 131 (2023) 051901, 2023.
Inspire Record 2075414 DOI 10.17182/hepdata.95235

The structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization. This study uses a data sample of ultraperipheral lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, corresponding to an integrated luminosity of 0.38 nb$^{-1}$, collected with the CMS experiment at the LHC. The measured second harmonic of the correlation between the sum and difference of the two jet momenta is found to be positive, and rising, as the dijet momentum increases. A well-tuned model that has been successful at describing a wide range of proton scattering data from the HERA experiments fails to describe the observed correlations, suggesting the presence of gluon polarization effects.

0 data tables match query

Search for bottom-squark pair production in $pp$ collision events at $\sqrt{s} = 13$ TeV with hadronically decaying $\tau$-leptons, $b$-jets and missing transverse momentum using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
Phys.Rev.D 104 (2021) 032014, 2021.
Inspire Record 1851675 DOI 10.17182/hepdata.99788

A search for pair production of bottom squarks in events with hadronically decaying $\tau$-leptons, $b$-tagged jets and large missing transverse momentum is presented. The analyzed dataset is based on proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider and recorded by the ATLAS detector from 2015 to 2018, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The observed data are compatible with the expected Standard Model background. Results are interpreted in a simplified model where each bottom squark is assumed to decay into the second-lightest neutralino $\tilde \chi_2^0$ and a bottom quark, with $\tilde \chi_2^0$ decaying into a Higgs boson and the lightest neutralino $\tilde \chi_1^0$. The search focuses on final states where at least one Higgs boson decays into a pair of hadronically decaying $\tau$-leptons. This allows the acceptance and thus the sensitivity to be significantly improved relative to the previous results at low masses of the $\tilde \chi_2^0$, where bottom-squark masses up to 850 GeV are excluded at the 95% confidence level, assuming a mass difference of 130 GeV between $\tilde \chi_2^0$ and $\tilde \chi_1^0$. Model-independent upper limits are also set on the cross section of processes beyond the Standard Model.

0 data tables match query

Search for new physics in dijet angular distributions using proton-proton collisions at $\sqrt{s}=$ 13 TeV and constraints on dark matter and other models

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 789, 2018.
Inspire Record 1663452 DOI 10.17182/hepdata.82308

A search is presented for physics beyond the standard model, based on measurements of dijet angular distributions in proton-proton collisions at $\sqrt{s}=$ 13 TeV. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 35.9 fb$^{-1}$. The observed distributions are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Constraints are placed on models containing quark contact interactions, extra spatial dimensions, quantum black holes, or dark matter using the detector-level distributions. In a benchmark model where only left-handed quarks participate, contact interactions are excluded at the 95% confidence level up to a scale of 12.8 or 17.5 TeV, for destructive or constructive interference, respectively. The most stringent lower limits to date are set on the ultraviolet cutoff in the Arkani-Hamed-Dimopoulos-Dvali model of extra dimensions. In the Giudice-Rattazzi-Wells convention, the cutoff scale is excluded up to 10.1 TeV. The production of quantum black holes is excluded for masses below 5.9 and 8.2 TeV, depending on the model. For the first time, lower limits between 2.0 and 4.6 TeV are set on the mass of a dark matter mediator for (axial-)vector mediators, for the universal quark coupling $g_\mathrm{q}\geq$ 1.

0 data tables match query

Observation of a new excited beauty strange baryon decaying to $\Xi^-_\mathrm{b} \pi^+ \pi^-$

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 126 (2021) 252003, 2021.
Inspire Record 1845579 DOI 10.17182/hepdata.102493

The $\Xi^-_\mathrm{b} \pi^+ \pi^-$ invariant mass spectrum is investigated with an event sample of proton-proton collisions at $\sqrt{s} = $ 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 140 fb$^{-1}$. The ground state $\Xi^-_\mathrm{b}$ is reconstructed via its decays to J$/\psi \Xi^-$ and J$/\psi \Xi^-\Lambda$K$^-$. A narrow resonance, labeled $\Xi_\mathrm{b}$(6100)$^-$, is observed at a $\Xi^-_\mathrm{b} \pi^+ \pi^-$ invariant mass of 6100.3 $\pm$ 0.2 (stat) $\pm$ 0.1 (syst) $\pm$ 0.6 ($\Xi^-_\mathrm{b}$) MeV, where the last uncertainty reflects the precision of the $\Xi^-_\mathrm{b}$ baryon mass. The upper limit on the $\Xi_\mathrm{b}$(6100)$^-$ natural width is determined to be 1.9 MeV at 95% confidence level. Following analogies with the established excited $\Xi_\mathrm{c}$ baryon states, the new $\Xi_\mathrm{b}$(6100)$^-$ resonance and its decay sequence are consistent with the orbitally excited $\Xi^-_\mathrm{b}$ baryon, with spin and parity quantum numbers $J^P=$ 3/2$^-$.

0 data tables match query