We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.
Results for the CP-averaged observables Fl, Afb and S3–S9. The first uncertainties are statistical and the second systematic.
Results for the optimised observables FL and P1–P'8. The first uncertainties are statistical and the second systematic.
The CP-averaged observable Fl versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The polarization of the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S) $mesons, produced in $pp$ collisions at centre-of-mass energies $\sqrt{s}$=7 and 8TeV, is measured using data samples collected by the LHCb experiment, corresponding to integrated luminosities of 1 and 2fb$^{-1}$, respectively. The measurements are performed in three polarization frames, using $\Upsilon\to\mu^+\mu^-$ decays in the kinematic region of the transverse momentum $p_{T}(\Upsilon)<30GeV/c$, and rapidity $2.2<y(\Upsilon)<4.5$. No large polarization is observed.
The polarization parameter $\lambda_{\theta}$ measured in the helicity frame for the $\Upsilon(1S)$ state in different bins of $p_{T}^{\Upsilon}$ and three rapidity ranges using data collected at $\sqrt{s}=7\,\mathrm{TeV}$. The first uncertainty is statistical and the second is systematic.
The polarization parameter $\lambda_{\theta\phi}$ measured in the helicity frame for the $\Upsilon(1S)$ state in different bins of $p_{T}^{\Upsilon}$ and three rapidity ranges using data collected at $\sqrt{s}=7\,\mathrm{TeV}$. The first uncertainty is statistical and the second represents the systematic uncertainty.
The polarization parameter $\lambda_{\phi}$ measured in the helicity frame for the $\Upsilon(1S)$ state in different bins of $p_{T}^{\Upsilon}$ and three rapidity ranges using data collected at $\sqrt{s}=7\,\mathrm{TeV}$. The first uncertainty is statistical and the second is systematic.
The inclusive $D_s^{\pm}$ production asymmetry is measured in $pp$ collisions collected by the LHCb experiment at centre-of-mass energies of $\sqrt{s} =7$ and 8 TeV. Promptly produced $D_s^{\pm}$ mesons are used, which decay as $D_s^{\pm}\to\phi\pi^{\pm}$, with $\phi\to K^+K^-$. The measurement is performed in bins of transverse momentum, $p_{\rm T}$, and rapidity, $y$, covering the range $2.5
Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the combined $\sqrt{s} =7$ and 8 TeV data sets. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).
Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the $\sqrt{s} =7$ TeV data set. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).
Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the $\sqrt{s} =8$ TeV data set. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).
The production cross-sections of $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ mesons in proton-proton collisions at $\sqrt{s}$= 13 TeV are measured with a data sample corresponding to an integrated luminosity of $277 \pm 11$ $\rm pb^{-1}$ recorded by the LHCb experiment in 2015. The $\Upsilon$ mesons are reconstructed in the decay mode $\Upsilon\to\mu^{+}\mu^{-}$. The differential production cross-sections times the dimuon branching fractions are measured as a function of the $\Upsilon$ transverse momentum, $p_{\rm T}$, and rapidity, $y$, over the range $0 < p_{\rm T}< 30$ GeV/c and $2.0 < y < 4.5$. The ratios of the cross-sections with respect to the LHCb measurement at $\sqrt{s}$= 8 TeV are also determined. The measurements are compared with theoretical predictions based on NRQCD.
Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(1S) (in pb). The first uncertainty is statistical and the second is systematic.
Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(2S) (in pb). The first uncertainty is statistical and the second is systematic.
Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(3S) (in pb). The first uncertainty is statistical and the second is systematic.
The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13\,TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum $p>2$\,GeV/$c$ in the pseudorapidity range $2<\eta<5$ is determined to be $\sigma_{\rm acc}= 62.2 \pm 0.2 \pm 2.5$\,mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section $\sigma_{\rm inel}= 75.4 \pm 3.0 \pm 4.5$\,mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7\,TeV is also reported.
The cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, yielding one or more prompt long-lived charged particles in the kinematic range $p > 2.0$ GeV/$c$ and $2.0 < \eta < 5.0$ (LHCb acceptance). The quoted uncertainty that is almost completely systematic in nature as the purely statistical uncertainty is found negligible. A particle is long-lived if its proper (mean) lifetime is larger than 30 ps, and it is prompt if it is produced directly in the $pp$ interaction or if none of its ancestors is long-lived.
The total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, extrapolated from Monte Carlo in similar way to measurement at $\sqrt{s}=7$ TeV.
Update of the total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV due to improved calibration of the luminosity scale.
Forward top quark pair production is studied in $pp$ collisions in the $\mu eb$ final state using a data sample corresponding to an integrated luminosity of 1.93 fb$^{-1}$ collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The cross-section is measured in a fiducial region where both leptons have a transverse momentum greater than 20 GeV and a pseudorapidity between 2.0 and 4.5. The quadrature sum of the azimuthal separation and the difference in pseudorapidities, denoted $\Delta R$, between the two leptons must be larger than 0.1. The $b$-jet axis is required to be separated from both leptons by a $\Delta R$ of 0.5, and to have a transverse momentum in excess of 20 GeV and a pseudorapidity between 2.2 and 4.2. The cross-section is measured to be $$\sigma_{t\bar{t}}= 126\pm19\,(\mathrm{stat})\pm16\,(\mathrm{syst})\pm5\,(\mathrm{lumi})\,\,\mathrm{ fb}$$ where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measurement is compatible with the Standard Model prediction.
The measured fiducial cross section. The uncertainty is split into statistical, systematic and uncertainty due to luminosity.
The Standard Model of particle physics currently provides our best description of fundamental particles and their interactions. The theory predicts that the different charged leptons, the electron, muon and tau, have identical electroweak interaction strengths. Previous measurements have shown a wide range of particle decays are consistent with this principle of lepton universality. This article presents evidence for the breaking of lepton universality in beauty-quark decays, with a significance of 3.1 standard deviations, based on proton-proton collision data collected with the LHCb detector at CERN's Large Hadron Collider. The measurements are of processes in which a beauty meson transforms into a strange meson with the emission of either an electron and a positron, or a muon and an antimuon. If confirmed by future measurements, this violation of lepton universality would imply physics beyond the Standard Model, such as a new fundamental interaction between quarks and leptons.
Likelihood function from the fit to the nonresonant $B^+$ --> $K^+\ell^+ \ell^−$ candidates profiled as a function of $R_K$.
The production of $B^{\pm}$ mesons is studied in $pp$ collisions at centre-of-mass energies of 7 and 13 TeV, using $B^{\pm}\rightarrow J/\psi K^{\pm}$ decays and data samples corresponding to 1.0 fb$^{-1}$ and 0.3 fb$^{-1}$, respectively. The production cross-sections summed over both charges and integrated over the transverse momentum range $0<p_{\text{T}}< 40$ GeV/$c$ and the rapidity range $2.0<y<4.5$ are measured to be $\sigma(pp \rightarrow B^{\pm} X, \sqrt{s} = \text{7 TeV}) = 43.0 \pm 0.2 \pm 2.5 \pm 1.7\mu b,$ $\sigma(pp \rightarrow B^{\pm} X, \sqrt{s} = \text{13 TeV}) = 86.6 \pm 0.5 \pm 5.4 \pm 3.4\mu b,$ where the first uncertainties are statistical, the second are systematic, and the third are due to the limited knowledge of the $B^{\pm}\rightarrow J/\psi K^{\pm}$ branching fraction. The ratio of the cross-section at 13 TeV to that at 7 TeV is determined to be $2.02\pm0.02\text{(stat)}\pm0.12\text{(syst)}$. Differential cross-sections are also reported as functions of $p_{\text{T}}$ and $y$. All results are in agreement with theoretical calculations based on the state-of-art fixed next-to-leading order quantum chromodynamics.
Measured B$^\pm$ double-differential cross-section (in units of nb) at 7 TeV, as a function of $p_T$ and $y$.
Measured B$^\pm$ double-differential cross-section (in units of nb) at 13 TeV, as a function of $p_T$ and $y$.
Measured B$^\pm$ differential cross-sections (in units of nb) at 7 TeV and 13 TeV as functions of $p_T$ in the range $2.0<y<4.5$. The cross-section ratio between 13 TeV and 7TeV is also presented.
The production of prompt charged particles in proton-lead collisions and in proton-proton collisions at the nucleon-nucleon centre-of-mass energy ${\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}}$ is studied at LHCb as a function of pseudorapidity ($\eta$) and transverse momentum ($p_{\mathrm{T}}$) with respect to the proton beam direction. The nuclear modification factor for charged particles is determined as a function of $\eta$ between ${-4.8<\eta<-2.5}$ (backward region) and ${2.0<\eta<4.8}$ (forward region), and $p_{\mathrm{T}}$ between ${0.2<p_{\mathrm{T}}<8.0\,\mathrm{GeV}/c}$. The results show a suppression of charged particle production in proton-lead collisions relative to proton-proton collisions in the forward region and an enhancement in the backward region for $p_{\mathrm{T}}$ larger than $1.5\,\mathrm{GeV}/c$. This measurement constrains nuclear PDFs and saturation models at previously unexplored values of the parton momentum fraction down to $10^{-6}$.
Double-differential production cross-section for prompt charged particles in pp collisions at 5TeV with respect to pseudorapidity and transverse momentum. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the forward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the backward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
An exotic narrow state in the $D^0D^0\pi^+$ mass spectrum just below the $D^{*+}D^0$ mass threshold is studied using a data set corresponding to an integrated luminosity of 9 fb$^{-1}$ acquired with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The state is consistent with the ground isoscalar $T^+_{cc}$ tetraquark with a quark content of $cc\bar{u}\bar{d}$ and spin-parity quantum numbers $\mathrm{J}^{\mathrm{P}}=1^+$. Study of the $DD$ mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell $D^{*+}$ mesons is confirmed by the $D^0\pi^+$ mass distribution. The mass of the resonance and its coupling to the $D^{*}D$ system are analysed. Resonance parameters including the pole position, scattering length, effective range and compositeness are measured to reveal important information about the nature of the $T^+_{cc}$ state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.
Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.
Mass distribution for $D^0 \pi^+$ pairs from selected $D^0 D^0 \pi^+$ candidates with a mass below the $D^{*+}D^0$ mass threshold with non-$D^0$ background subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.
$D^0 D^0$~mass distributions for selected candidates with the $D^0$ background subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.